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Abstract. Fuzzy extractor is a powerful but theoretical tool to extragiform
strings from discrete noisy data. Before it can be used iotjpe many concerns
need to be addressed in advance, such as making the extsé&iingd renewable
and dealing with continuous noisy data. We propose a prigiitizzy embedder
as a practical replacement for fuzzy extractor. Fuzzy emdexaturally supports
renewability because it allows a randomly chosen stringetefnbedded. Fuzzy
embedder takes continuous noisy data as input and its peafare directly links
to the property of the input data. We give a general constudor fuzzy embed-
der based on the technique of Quantization Index Modulgti@m) and derive
the performance result in relation to that of the underly@gv In addition, we
show that quantization in 2-dimensional space is optinmhfthe perspective of
the length of the embedded string. We also present a concoetgruction for
fuzzy embedder in 2-dimensional space and compare itsrpeafce with that
obtained by the 4-square tiling method of Linnagtal.[13].

1 Introduction

Most cryptographic protocols rely on exactly reproducikdg material. In fact, these
protocols are designed to have a wildly different outpuh& key is perturbed slightly.
Unfortunately, exactly reproducible keys are hard to comespecially when they also
need to have sufficient entropy. Luckily, it is relativelysgao find “fuzzy” sources, such
as physically uncloneable functions (PUFs) [17] and bioioe{8]. However, such
sources are inherently noisy and rarely uniformly distiélols The first (main) difficulty
in transforming a fuzzy source into key material is to cortbe noise and reproduce
the same key every time. To solve this problem, the notioreofise sketch [12] has
been proposed. The second difficulty lies in the fact the wtubp secure sketch may
have a non-uniform distribution, while it should be as clas@niform as possible to
serve as a cryptographic key. A strong randomness extreatdd be used to turn the
reproducible output into a nearly uniform string. In theddture, a common way of
extracting keys from noisy data is to combine a secure shkeittha strong randomness
extractor, which leads to the notion of a fuzzy extractor [8]

When deploying a fuzzy extractor in practice, more concesel to be addressed.
Firstly, even with the same input (noisy data), it should begible to extract differ-
ent keys (referred to as renewability). To achieve renelitbihe (fixed) output of
the fuzzy extractor must be randomized, for instance byguairommon reference
string. Unfortunately, this falls outside the scope of fuextractor, even though it is



recognized as an important and sensitive issue [2]. Segdiudlzy extractor only ac-
cepts discrete sources as input. Existing performance uresgor secure sketches,
such as entropy loss or min-entropy, lose their relevancenvapplied to continuous
sources [12]. This limitation can be overcome by quantifiirggcontinuous input. Liet
al. [12] propose to define relevant performance measures farssketch with respect
to the chosen quantization method.

CONTRIBUTIONS. Our contribution is threefold. Firstly, we propose a newnptive
fuzzy embeddarhich can be regarded as a practical replacement for fuzizgasgr.
Fuzzy embedder can embed a uniformly distributed key whkeg continuous noisy
data as input. Its performance directly links to the propeftthe input data. Fuzzy
embedder formalizes the concept of “key binding” in bioritetemplate protection
schemes surveyed by Uludagg,al. [20]. In fact, fuzzy embedder can also be regarded
as a natural extension of fuzzy extractor, since it can enalfeckd string (for instance
one obtained by applying a strong extractor to the input@®unto a discrete source
and thus achieve the same functionality, namely a randaheizgtographic key. How-
ever, a fuzzy embedder scheme can be directly used with @eyaf/input to achieve
the same goal as a fuzzy extractor scheme without the neettitess those concerns
mentioned previously.

Secondly, we propose a general construction for fuzzy enrdaased on the tech-
nique of Quantization Index ModulatioQ M and derive the performance result in
relation to that of the underlyin@ M In the context of watermarking, usirt@ Mcan
achieve efficient trade-offs between the information endirggirate, the reliability and
the distortion [5]. The trade-offs of the underlyidd Mgive rise to similar trade-offs
in fuzzy embedder performance measures. Note that shigldirctions [13] can be re-
garded as a particular construction of a fuzzy embeddenggsfbcus on one particular
type of quantizer. However, they only consider one-dimamaiinputs.

Thirdly, we investigate different quantization strategfer high dimensional data
and show that quantization in two dimensions gives an opliength of the embedded
uniform string. Finally, we propose a concrete constructb fuzzy embedder in 2-
dimensional space and compare its performance with thairadat by the 4-square
tiling method of Linnartzet al.[13].

RELATED WORK.Dodis,et al.[8] consider discrete distributed noise and propose fuzzy
extractors and secure sketches for different error mo@lalsse models are not directly
applicable to continuously distributed sources. Linnatal.[13] construct shielding
functions for continuously distributed data and proposea&firal construction which
can be considered a 1-dimensio@M The same approach is taken by &f,al. [12]

who propose quantization functions for extending the sajmecure sketches to con-
tinuously distributed data. Buhagt, al.[3] analyze the achievable performance of such
constructions given the quality of the source in terms offélige acceptance rate and
false rejection rate of a biometric system.

The process of transforming a continuous distribution tdsardte distribution in-
fluences the performances of secure sketches and fuzzgtxgaQuantization is the
process of replacing analogue samples with approximatesabken from a finite set
of allowed values. The basic theory of one-dimensional tjgation is reviewed by



Gersho [9]. The same author investigates the influence ¢f tigiensional quantiza-
tion on the performance of digital coding for analogue sesaffd0].Q Mconstructions
are used by Chen and Wornell [5] in the context of watermaykirhe same authors
introduce dithered quantizers [6]. Moulin and Koetter [$8le an excellent overview
of Q Min the general context of data hiding. Barraat,al. [1] develop a geometric
interpretation of conflicting requirements between infatimn embedding and source
coding with side information.

Fuzzy embedder is somehow related to the concept of infesm#teoretic key
agreement [14,15]. However, the settings of the problenddferent. In secure mes-
sage transmission based on correlated randomness theeatiad the legitimate partic-
ipants have a noisy share of the same source data, whiles fntlay embedder setting,
the attacker does not have access to the data source.

ROADMAP. The rest of the paper is organized as followsSkrtion 2 we describe our
notation and provide some background knowledgé&edntion 3 we present the defini-
tion of fuzzy embedder and highlight the differences withziy extractor. IrSectior4
we propose a general construction of a fuzzy embedder frgn@aMand express the
performance in terms of the geometric properties of the tyitig quantizers. IrSec-
tion 5 we present a concrete construction for fuzzy embedderdim2nsional space
and compare its performance with that obtained by the 4redileng method of Lin-
nartz,et al.. In the last section we conclude this paper.

2 Preliminaries

Let M be ann-dimensional discrete, finite set, which together with dadise function
drm 0 M x M — RT forms a metric space. Similarly, léf be ann-dimensional
continuous domain, which together with the distadge i/ x i/ — R* forms a metric
space. For the purpose of this work, we uséor both d,, andd;,. Capital letters
are used to denote random variables while small lettersseé to denote realizations
of random variables. Continuous random variables are defiver the metric space
U while discrete random variables are defined over the mep@écesM. A random
variable A is endowed with a probability density functigi (a). We use the random
variable P when referring to public sketch data aRdfor random binary strings in the
descriptions of fuzzy extractor and fuzzy embedder.

MUTUAL INFORMATION. By I(A; B) we note the Shannon mutual information be-
tween the two random variables and B, which measures the amount of uncertainty
left aboutA when B is made public. We havé&(A; B) = 0 if and only if A and B
are independent random variables. Formal definitions abpgit min-entropy, average
min-entropy, and statistical distan§é can be found in [8].

FUZZY EXTRACTOR.According to the definition by Dodigt al. [8], a fuzzy extractor
extracts a uniformly random stringfrom a valuex of random variableX in a noise-
tolerant way with the help of some public skejefsee Figure 1). For a discrete metric
spaceM with a distance measudg fuzzy extractor [2,8] is formally defined as follows.

Definition 1 (Fuzzy Extractor). An(M,m, 1, t, ¢) fuzzy extractor is a pair of random-
ized procedure$Generate, Reproduce) with the following properties:
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Fig. 1. A fuzzy extractor is a pair of two proceduréSenerate, Reproduce). TheGenerate func-
tion takes noisy data: as input and returns a random string and a public sketclp. The
Reproduce function takes noisy data’ and the public sketcl as input, and outputs if
andz’ are close.

1. The generation procedure on input2oE M outputs an extracted stringe R =
{0,1}! and a public helper string € P = {0, 1}*.

2. The reproduction procedure takes an elem&ng& M and the public string €
{0,1}* as input. Thereliability property of the fuzzy extractor guarantees that if
d(z,2") < tandr, p were generated bfr, p) < Generate(x), thenReproduce(x’, p) =
r. If d(x,2") > t, then no guarantee is provided about the output of the repredu
tion procedure.

3. Thesecurityproperty guarantees that for any random variablewith distribution
fx (z) of min-entropym, the stringr is nearly uniform even for those who observe
p: if (r,p) < Generate(X), thenSD((R, P), (N, P)) < e where N is a random
variable with uniform probability.

In other words, a fuzzy extractor allows to generate the eandtringr from a
value z. The reproduction procedure which uses the public stpimgoduced by the
generation procedure will output the stringas long as the measuremaeritis close
enough. This is theeliability property of the fuzzy extractor. Theecurity property
guarantees that looks uniformly random to an attacker and her chance to giess
value from the first trial is approximatey ™. Security encompasses battin-entropy
and uniformity of the random stringwhenp are known to an attacker.

We have two observations on the shortcomings of fuzzy etdra®©ne is that, the
public string is from the discrete sBt= {0, 1}*. However, there are biometric template
protection schemes that fit the model of the fuzzy extradtorahich P is drawn from
R [13] or Z [18]. The other is that, defining min-entropy fof makes sense only if
X has a discrete probability density function otherwise its-entropy depends on the
guantization of the variable [12].

QUANTIZATION. A continuous random variablé can be transformed into a discrete
random variable by means of quantization, which we writ@é4). Formally, a quan-
tizer is a functiony : &/ — M that maps: € U into the closesteconstruction poinin
the setM = {¢1, ¢, - } by

Q(a) = argmin_ ¢ \d(a, c;)

whered is the distance measure definediénThe Voronoi regionor thedecision re-
gion of a reconstruction point; is the subset of all points it¥, which are closer to
that particular reconstruction point than to any other nstauction point. We denote
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Fig. 2. By quantizationfa (a) (continuous line) Fig. 3. Quantization ofX with two scalar quan-
is transformed intgfg 4 (a) (dotted line). tizersQo and @ both with step size g.

with V., the Voronoi region of reconstruction poiait WhenA is 1-dimensionalg) is
called ascalar quantizer. If all Voronoi regions of a quantizer are equad, quantizer

is uniform In the scalar case, the length of the Voronoi region is thadled thestep
size.If the reconstruction points form a lattice, the Voronoiigets of all reconstruction
points are congruent. By quantization, the probabilitygitgrfunction of the continu-
ous random variabld, f4(a) which is continuous, is transformed into the probability
density functionfy ) (a) which is discrete (Sekigure 2).

QUANTIZATION-BASED DATA HIDING CODES. Quantization based data hiding codes,
introduced by Chergt al.[5] (also known ag) M), can embed secret information into
a real value. We start with the following example.

Example 1We want to embed one bit of information, thuse {0,1} into a real
valuez. For this purpose we use a scalar uniform quantizer with sitegy, given by

xZ
x) = —.
Q) =]
The quantizer) is used to generate a set of two new quantiZ€}s, Q1 } defined as:
vy = %, vy = —%, Qo(z) = Q(x +vo) —vo, Q1(z) =Q(z +v1)—v1.

In Figure 3 the reconstruction points for the quantizgr are shown as circles and
the reconstruction points for the quantizgg are shown as crosses. The embedding is
done by mapping the point to the elements of these two quantizers. For example, if
r = 1, z is mapped to the closestpoint. The result of the embedding is the distance
vector to the nearest or o as chosen by. During reproduction procedure, when
is perturbed by noise, the quantizer will assign the reckdega to the closest or o
point, and output 0 or 1 respectively.

Formally, aQuantization Index Modulatiodata hiding scheme, can be seen as
Q M: U x R — M aset of individual quantizer®), Q2, . . . @ }, wherel = |R| and



each quantizer maps < U into a reconstruction point. The quantizer is chosen by the
input valuer € R such thaQ Mz, r) = Q,(z). The set of all reconstruction points is
M = U, cr Mr WhereM,. C M is the set of reconstruction points of the quantizer
Q-

We define thaninimum distance,;, of aQ M as the minimum distance between
reconstructions points of all quantizers in QeM

Omin = min min d(ct ,cd)
r1,72€ER i eEM,. .(:'Z; eM,. ! 2
] 1°°72 2
whereM,., = {c} ¢ ,---}andM,, = {c;,,cZ,,- - - }. Hence, balls with radiugz==
and centers ioV are disjoint. Let, be the smallest radius ball such that balls centered
in the reconstruction point of quantiz€),. with radius¢, cover the universé/. We
define thecovering distance\ .« as:

/\max = max Cr-
reR

Any ball B(c, () contains at least one baB(c,, omin/2) for ¢, € M,.,Vr € R.
Hence, balls with radius,,.x and centers ioV,. cover the univers#.

A ditheredQ M[6] is a special type ofd Mfor which all Voronoi region of all indi-
vidual quantizers are congruent polytopes (generalinati@a polygon to higher dimen-
sions). Each quantizer in the ensembig,, Q-, ... Q@ } can be obtained by shifting
the reconstruction points of any other quantizer in the mfde. The shifts correspond
to dither vectorgwvy, va, ... vy }. The number of dither vectors is equal to the number
of quantizers in the ensemble.

The reliability (or, the amount of tolerated noise) ofQaMis determined by the
minimum distance between two neighboring reconstructmintg. The size and shape
(for high dimensional quantization) of the Voronoi regiceteimines the tolerance for
error. The number of quantizers in tkk Mset determines the amount of information
that can be embedded. By setting the number of quantizerbyandoosing the shape
and size of the decision region the performance properéiede fine tuned.

3 Fuzzy Embedder

In this section, we define fuzzy embedder and show its relghip with fuzzy extractor.
It is worth stressing that the random keys not extracted from the random but is
generated independently, as illustratedrigure 4.

Definition 2 (Fuzzy Embedder).A (U, ¢, p, €, 0)-fuzzy embedder scheme consists of
two polynomial-time algorithm&mbed, Reproduce), which are defined as follows:

— Embed: U x R — P, whereR = {0, 1}!. This algorithm takes € ¢/ andr € R
as input, and returns a public sketphe P.

— Reproduce: U x P — R. This algorithm takes’ € ¢/ andp € P as input, and
returns a string fromR or an error symbolL.

Given any random variabl& overi{ and a random variableR?, the parameter
p, €, 6 are defined as follows:
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Fig. 4. A fuzzy embedder is a pair of two procedutEsmbed, Reproduce). TheEmded function
takes noisy data and a binary string- as input, and outputs a public sketghTheReproduce
function takes noisy data’ and the public sketch as input, and outputs if z andz’ are close.

— The parametep represents the probability that the fuzzy embedder caresstally

reproduce the embedded key, and it is defined as
: J . — J
p = minmax Pr(Reproduce(z’, Embed(z, r)) = r|z’ € X).

In the above definition, the maximum oweE U/ ensures that we choose the best
possible representativefor the random variableX. In most cases, this will be the
mean ofX.

— The security parameteris equal to the mutual information between the embedded
key and the public sketch, and it is definedtas I(R; Embed(X, R)).

— The security parameteris equal to the mutual information of the noisy data and
the public sketch and is defined&s= I(X; Embed(X, R)).

Since the public sketcp is computed both oX and R, ¢ measures the amount
of information revealed abouf andd measures the amount of informatiéhreveals
about the cryptographic keit. When evaluating security of algorithms, which derive
secret information from noisy data, entropy measures like-entropy, average min-
entropy, and entropy loss are appealing since these medsanve clear security appli-
cability. However, these measures can only be applied wetis random variable. In
the case of continuous random variables, these measuresdlep the precision used
to represent the values of a random variable, as shown irtloeving example.

Example. Assume that all points{ are real numbers betweé, 1] and are uni-
formly distributed. Assume further that points i are represented with 2-digit pre-
cision, which leads to a min-entrogy..(X) = log, 100. If we choose to represent
points with 4-digit precision the min-entropy &f becomesH (X ) = log, 10000,
which is higher therHH . (X) = log, 100 although in both caseX is uniformly dis-
tributed over the intervgD, 1].

More examples related to average min-entropy and entrogs/ dan be found in
the work of Li et al. [12]. We have chosen mutual information because it captures
the measure of dependence between two random variablaslleggof their types of
distributions (discrete or continuous).

FUZZY EXTRACTOR AND FUzZzZY EMBEDDER.From Definitions1 and 2, we argue
that a fuzzy embedder may be more appealing than fuzzy ¢éatracpractice, due to
the following reasons:

1. A fuzzy embedder scheme accepts continuous data as ingata embed differ-
ent keys. In contrast, in a practical deployment, a fuzzyaettr scheme must be
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combined with quantization and re-randomization to achithe same goals as a
fuzzy embedder.

2. A fuzzy embedder construction leads to a fuzzy extractmstruction. Given a
(U, L, p,e,6)-fuzzy embedder scheme, we can construct a fuzzy extrachense
(Generate’, Reproduce’) as follows:

— Generate’: Y — P x R. This algorithm takes € U as input, choosese R,
and returng = Embed(x, r) andr.

— Reproduce”: U x P — R. This algorithm takes’ € U/ andp € P as input,
and returns the valuReproduce(z, p).

4 A Practical Construction for Fuzzy Embedder

In this section, we present a general construction for fermpedder using @ Mand
analyze the performance of this construction in terms ddibéity and security. We also
investigate optimization issues whéfis n-dimensional.

Q MFUZzzY EMBEDDER.A fuzzy embedder can be constructed franyQ Mby defin-
ing the embed procedure as:

Embed(z,r) = Q Mz, r) — z,

and the reproduction procedure as the minimum distancedeae! decoder:

Reproduce(2’, p) = Q(2’ + p),

whereQ : U — Ris defined as

Q(y) = argmin d(y, M.,.).
reR
Intuitively, our construction is a generalization of théeme of Linnartzet al.[13].
Figures5 and 6 illustrateEmbed andReproduce, respectively, for &l Mensemble of
three quantizer$Q,, @+, Q. }. During embedding, the secretc {0, , +} selects a
quantizer, say),. The selected quantizer finds the reconstruction pQiitr) closest
to z and the embedder returns the difference between the twoagh p < Apax.



Reproduction fronp andz’ should returno only if 2’ + p is in one of the Voronoi
regions of@, (hatched area ifrigure 6). Errors occur if(z’ + p) is not in any of the
Voronoi regions of),, thus the size and shape (for> 2) of the Voronoi region param
eterized by the radius of the inscribed ball;,,/2 determines the probability of errors.

RELIABILITY . In the following lemma, we link the reliability of @ Mfuzzy embedder
to the size and shape of the Voronoi regions of the emplcyed

Lemmal (Reliability). Let(Embed, Reproduce) be a(4, ¢, p, €, §) Q Mfuzzy embed-
der, and letX be a random variable oveéx with joint density functiorf x (z). For any
r € R, we define
p(r) = fx(y — Embed(X,r))dy,
V'r
whereV, = [ c . Ve is the union of the Voronoi regions of all reconstructionmsi
in M,.. Then the reliability is equal to

p = mi p(r).
Proof: Sincep(r) is exactly the probability that an embedded kewill be recon-
structed correctly, the statement follows from the defmiti O
Most known noisy data, such as biometrics and PUFs, have taino properties:
larger distances betweanand the measurement are increasingly unlikely, and the
noise is not directional. Thus the primary consideratiarrétiability is the size of the
inscribed ball of the Voronoi regions, which has radiys,, /2.

Corrolary 1 (Bounding p) In the settings of Lemma 1, the reliability parameteran
be bounded by
i <
min ) /B L Ixwdy <p

nin

cEM,. (e,=3

whereB(c, r) is the ball centered i with radiusr.

Proof. The above relation follows from the definition of relialylisinceS(c, §) C V.
andz + Embed(X, r) is always a reconstruction point. O

Corollary 1 shows that reliability is at least the sum of &l of radius®s= in-
scribed in the Voronoi regions. Thus the size of the insctiball is an important pa-
rameter, which determines the reliability to noise.

SECURITY.In our construction, if an attacker learns the valughe can reproduce the
valuer from p. However, if it learns the secret keyshe could cannot exactly reproduce
x, which is further illustrated in the following example

Exampleln the fuzzy embedder example giverFigure 6, the attacker can choose
between three different key valdes +, «}. Assume she learns the correct key, in our
exampleo. To find the correct value far she still has to decide which of the recon-
struction points of the quantiz€), is closest tor. Without any other information this
is an impossible task since the quantizgr has an infinite number of reconstruction
points.



Since the full disclosure of the strings not enough to recover, we can conclude
thate < 5. We now consider how largé& the leakage on the key depending Bn
which is a continuous variable in our construction. We knbattanyp € P has the
property thapp < A\n.x. A technical difficulty in characterizing the size 6farises as
P is not necessarily discrete. Tuyét,al.[19] show the following result, establishing a
link between the continuous and the quantized versiaf dénoted here witl®;.

Lemma 2 (Tuyls et al. [19]). For continuous random variableX, Y and ¢ > 0,
there exists a sequence of discretized random varialilgd’; that converge pointwise
to X, Y (whend — o) such that for sufficiently largé, I(X;Y) > I(X4;Yy) >
I(X;Y)—¢.

Sincel(R; Py) < H(P;) < |Py4|, where|P,]| is the size of the sketch. Thus it is
best to havéP;| as small as possible. In our construction, we ha@g < A\pax. Thus
by bounding the size gf we bound the value df.

OPTIMIZATION. In this paragraph, we analyze the key length allowed by thigicions
placed by our performance criteria on the embed and repeogumcedures. Firstly,
we take a look at the reproduce procedure which ties diredtly the reliability. The
minimum size of an error to produce a wrong decodingyis, /2. Thus, the collection
of balls centered in the reconstruction point of all quasrsavith radiusr,,i, /2 should
be disjoint.

Fig. 7. Optimization of reliability versus security. Reliability determined by the size of the ball
with radius omin /2. Each small ball has associated to its center a different'kkey R. The
number of small ball inside the large ball with radids,.x is at least2' the number of elements
in R. To have as many keys as possible we want to increase the nofrdieall ball, thus we
want dense (sphere) packin@he size of the public sketghe P is at mostA,ax. Since for
anyx € U we want to be within\,.... distance to a specifie € R, large balls shouldcover
optimally the spacé/. When the point falls in a region, which does not belong to any ball the
reproduction procedure gives the closest center of a snal] thus we want polytopes which
tile the space



Secondly, the embed procedure has to be able to embed amykéyinto an arbi-
trary pointz. Hence, for each keythe collection of balls centered in the reconstruction
points of @, and with radius\,,»x should cover the entire spatfe \,.x and Ay, can
be linked as follows:

Lemma 3. The covering distance of@ M, defined in Section 2, is bounded by:

n O. i
/\max Z VN 1121111

wheren represents the dimension of the univetsand N is the number of different
quantizers.

Proof: As noted above, all balls with radius,;,/2 centered in the centroids of
the whole ensemble are disjoint. Each collection of balthwadiusA,,.x centered in
the centroids of an individual quantizer gives a coveringhef spacé{, seeFigure 7.
Therefore, a ball with radius,, .., regardless of its center, contains at least the volume
of N disjoint balls of radiug i /2, 0ne for each quantizer in the ensemble. Comparing
the volumes, we have

Sn)‘&ax Z SnN(Umm )n
2
wheres,, is a constant only depending on the dimension. a

Consider the case when an intruder has partial knowledgg #tmrandom variable
X. For example, she could know the average distribution dfialijerprint) biometrics,
or the average distribution of the PUFs. This average digiion is known in the litera-
ture as background distribution. While a@yMfuzzy embedder achieves equiprobable
keys if the background distribution @his uniform, the equiprobability can break down
when this background distribution is non-uniform and kndaihe intruder. A legiti-
mate question ishow can aQl Mfuzzy embedder achieve equiprobable keys when the
background distribution is not uniform?

In the literature [4,7,13], it is often assumed that the lgaolind distribution is a
multivariate Gaussian. We make a much weaker assumptiomelgahe background
distribution is not uniform but spherically symmetricaldethecreasing. In other words,
we assume that measurement errors of the noisy data onlpdepethe distance, and
not on the direction, and that larger errors are less likely.

Thus, to achieve equiprobable keys given this backgrousitdilolition, the recon-
struction points must be equidistant as for example thetoact®on in Figure 8 (a).
Note that putting more small balls inside the large ball ispassible since they are not
equiprobable. The problem with the constructiofrigure 8 (a) is the size of the sketch
which becomes large.

The natural question, which arisevghat is the minimum sketch size attainable such
that all keys are equiprobable for a given desired reliafli This question naturally
leads us to consider the kissing numbe¢n), which is defined to be the maximum
number of whiten-dimensional spheres touching a black sphere of equalsadae
Figure8 (b). The radius of the small balls determines reliabilitgd ghe minimum\ .,
such that @ Mfuzzy embedder can be built is equal to the radius of theioiscribed
ball of as shown irFigure 8 (b).
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Fig. 8. (a) Construction which yields equiprobable keys in casehhekground distribution is
spherical symmetrical in the two dimensional space. (b)if®aitconstruction which results in
minimal public sketch size and has equiprobable keys invtbbedimensional space.

The next question we ask iar a minimum sketch size and a given reliability, are
there dimensions which are better then othefsg? example why not pack spheres in
the three dimensional space where the kissing number isot2h& same reliability it is
possible to obtain more keys? For most dimensions, only #®on the kissing number
are known [11,21]. Assuming a spherically symmetrical ardrdasing background
distribution, we have the following bound on equiprobaldgk

Theorem 1 (Optimal high dimensional packing.).Assume the background distribu-
tion to be spherically symmetrical and decreasing. Faia/, p,¢,0) Q Mfuzzy em-

bedder withdim(&/) = n with equiprobable keys and minimal sketch size, we have that
£ < 1(n).

Proof sketchThe target reliabilitypy will translate to a certain radiug. In other
words, we need to stack balls of radiggsoptimally. To achieve the maximum number
of equiprobable keys without the sketch size getting too thig best construction is to
center the background distribution in one such ball, andsign a different key to each
touching ball. Thus the amount of possible equiprobable keypper bounded by the
kissing number(n). O

From the known bounds on the kissing number [11,21], we hheefdllowing
somewhat surprising conclusion:

Corrolary 2 Assuming a spherically symmetrical and decreasing backytaistri-
bution onl/ and equiprobable keys, for @, ¢, p, ¢, §) Q Mfuzzy embedder the most
equiprobable keys are attained by quantizing two dimerssivia time, leading toV (n)
different keys, where

N(n) = 6Llzla=215]),

Proof: Known upper bounds [11] on the kissing humberidimensions state that
7(n) < 20-401n(1+e(1)) This meanstha¥ (n) > 7(n) in all dimensions, sinc& (n) ~



Fig. 10. Reproduce function of 6-hexagonal
Fig. 9. Reproduce function of 7-hexagonal tilingtiling

2137 and small dimensions can easily be verified by hand. Also ti@eN (n; +
ng) < N(n1)N(ng). Thus quantizing dimensions pairwise gives the largestirarrof
equiprobable keys for any spherically symmetric distiiidt a0

5 Q Mifuzzy embedder from 2-dimensional quantization

In this section we present our main construction, referecedst 6-hexagonal tiling, of
Q Mfuzzy embedder by quantizing 2-dimensional subspacesmtfriuous and noisy
data. We compare the performance with the 4-square tilinpodeintroduced by Lin-
nartz,et al.[13].

Preliminary concepLet the continuous and noisy data be represented witdianensional
variableX = (X;, X2, - X,,). We assume that is even; otherwise one of the vec-
tor elements can be quantized with a 1-dimensighaflas the one in our example in
Section2. Thus, X can be partitioned inté; 2-dimensional subspaces and each one
can be considered separately. We take the subgpaceX,) as an example in the rest
of this section. On the-axis inFigure 9 we have the values foX; and on they-axis

we have the values of,. Along thez-axis (not shown in the figure) we have the joint
probability densityf x, x, ().

Naturally, we want to choose the densest circle packingi®Ptdimensional space,
where all circles have equal radius and the center of thkedgthe reconstruction point
which is associated with a key value. However, the circlenaldile the space so that,
whenz (the realization ofX) falls into the non-covered region it cannot be associated
with any reconstruction point. Therefore, we need to apjpnate the circle with some



polygons that can tile the space. In 2-dimensional spaeeg tare only three types of
polygons: triangle, square, and hexagon. Since we assupteeda&l symmetrical dis-
tribution for fx, x,, hexagon is the best approximation to the circle from thielodity
point of view.

5.1 Description of 6-hexagonal tiling

First attempt. In our construction, the reconstruction points of all qiiers are shifted
versions of some base quantiz@s. A dither vectorv, is defined for each possible
r € R. We define thetiling polygonas the repeated structure in the space that is
obtained by decoding to the closest reconstruction padirfbllows from this defini-
tion that thetiling polygoncontains exactly one Voronoi region for each quantizer in
the ensemble. Irigures9 thetiling polygonsare delimited by the dotted line. More
specifically, we define a dithere@ Musing an ensemble of 7 quantizers. The recon-
struction points of the base quantizgy are defined by the lattice spanned by the vec-
tors B, = (5,v/3)q, Bs = (4,—2+/3)q, whereq is the scaling factor of the lattice.
In Figure 9 these points are labeled. The other reconstruction points of quantiz-
ers@; (1 < ¢ < 6) are obtained by shifting the base quantizer by the dithetovec
{v1,--+, 6} such tha;(z) = Qo(@ + v;). The values for these dither vectors are:
v = (2,0), vy = (_37\/3)' vg = (-1, _\/g)! vy = (=2,0), vs = (3, _\/g)' and
26 = (1,1/3). The embed and reproduce procedures are defingddtiors.

This construction (referred to as 7-hexagonal tiling) catvedn x logT” bits, where
n is the dimensionality of random variah}é. It is optimal from the reliability point of
view. However, assume that the background distributiorsisteerical symmetrical dis-
tribution with mean centered in the origin of the coordisate the construction above
the hexagon centered in the origin will typically have a ighssociated probability
than the off-center hexagons. This effect grows as we iserdlae scaling factay of
the lattice. Therefore, keys might be not equiprobable viheackground distribution
is not flat enough.

Improved constructionln the improved construction, namely 6-hexagonal tiling, w
eliminate the middle hexagon to make all keys equiprobatgeKigure 10). Conse-
quently, the tiling polygon is formed by 6 decision regiomsldhus there are only 6
dither vectors. As a result, the dither vectofs;, - -- ,vs } are used to construct the
gquantizers, but the basic quantizgy itself is not used. The embed and reproduce pro-
cedures remain the same.

Our main construction can embedx % bits, wheren is the dimensionality
of random variableX. Compare with the first attempt, this construction is noti-opt
mal from the key length point of view. However, keys are eqijfable regardless of
the background distribution, which we regard to be more fable in cryptographic
applications.

5.2 Comparison with 4-square tiling

We compare the performance between 6-hexagonal tiling aphidre tiling in terms of
reliability, the key length, and mutual information. Here wonsider identically and in-
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Fig. 11. Reliability of the threed Mfuzzy embedder constructions.

dependently distributed (i.i.d) Gaussian sources. Werasshat the background distri-
bution has meaf®, 0) and standard deviatiany, x,2. We also assume that for any ran-
dom (X, X3) € U?, the probability distribution of x, x, (z) has mean = (u1, p2)

and standard deviatiar?. Note that these assumptions are abstracted from the area of
biometrics (as an example of continuous and noisy data).

To evaluate the reliability relative to the quality of theusce data (i.e., the amount
of noise measured in the terms of standard deviation frormin@se compute probabil-
ities associated with equal area decision regions, ancettenstruction point centered
in the mearu of the distributionf x (z). The curves in Figure 11 were obtained by pro-
gressively increasing the area of the Voronoi regions. Tdeeaf Voronoi region is con-
trolled by the scaling factor of the lattice, namelyFrom the figure, our 6-hexagonal
tiling construction has a slightly better performance tittaa 4-square tiling method.
This is because the regular hexagon best approximatede, tlire optimal geometrical
form for a spherical symmetrical distribution. The keyd#mcomparison is shown in
Figure 12. Clearly, our 6-hexagonal tiling constructiors laasignificantly better per-
formance than the 4-square tiling method. Note that maxirgithe key length means
minimizing the probability for an attacker to guess the kegrectly on her first try. The
comparison of mutual information for the key when publighihe sketch is shown in
Figure 13. Note that the values are scaled to the numberslidsit from each bit that is
made public. From the figure, our 6-hexagonal tiling coriom has a slightly better
performance than the 4-square tiling method.

6 Conclusion

We have proposed a new primitifiezzy embeddexs a practical replacement for fuzzy
extractor. Fuzzy embedder has solved two practical probkmmountered when a fuzzy
extractor scheme is used in practice: (1) fuzzy embedderalt supports renewabil-
ity, and (2) it supports direct analysis of quantizatioreets. We have also proposed a
general construction of fuzzy embedder using ¢ TheQ Mperformance measures
(in the context of watermarking) can be directly translated the reliability and se-
curity properties of the constructed fuzzy embedder. Wharsidering equiprobable
keys, we have shown that quantizing dimensions pairwisesgive largest key length.
We have proposed a concrete construction, namely 6-hegagiimg, and shown that
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Fig.12. Key length comparison for the thrdeg. 13.Mutual information between the key and
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one dimension ders

it has a better performance than the 4-square tiling methimdduced by Linnartzet
al. [13].
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