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Abstract. Fuzzy extractor is a powerful but theoretical tool to extract uniform
strings from discrete noisy data. Before it can be used in practice, many concerns
need to be addressed in advance, such as making the extractedstrings renewable
and dealing with continuous noisy data. We propose a primitive fuzzy embedder
as a practical replacement for fuzzy extractor. Fuzzy embedder naturally supports
renewability because it allows a randomly chosen string to be embedded. Fuzzy
embedder takes continuous noisy data as input and its performance directly links
to the property of the input data. We give a general construction for fuzzy embed-
der based on the technique of Quantization Index Modulation(QIM) and derive
the performance result in relation to that of the underlyingQIM. In addition, we
show that quantization in 2-dimensional space is optimal from the perspective of
the length of the embedded string. We also present a concreteconstruction for
fuzzy embedder in 2-dimensional space and compare its performance with that
obtained by the 4-square tiling method of Linnartz,et al. [13].

1 Introduction

Most cryptographic protocols rely on exactly reproduciblekey material. In fact, these
protocols are designed to have a wildly different output if the key is perturbed slightly.
Unfortunately, exactly reproducible keys are hard to come by, especially when they also
need to have sufficient entropy. Luckily, it is relatively easy to find “fuzzy” sources, such
as physically uncloneable functions (PUFs) [17] and biometrics [8]. However, such
sources are inherently noisy and rarely uniformly distributed. The first (main) difficulty
in transforming a fuzzy source into key material is to correct the noise and reproduce
the same key every time. To solve this problem, the notion of secure sketch [12] has
been proposed. The second difficulty lies in the fact the output of secure sketch may
have a non-uniform distribution, while it should be as closeto uniform as possible to
serve as a cryptographic key. A strong randomness extractorcould be used to turn the
reproducible output into a nearly uniform string. In the literature, a common way of
extracting keys from noisy data is to combine a secure sketchwith a strong randomness
extractor, which leads to the notion of a fuzzy extractor [8].

When deploying a fuzzy extractor in practice, more concernsneed to be addressed.
Firstly, even with the same input (noisy data), it should be possible to extract differ-
ent keys (referred to as renewability). To achieve renewability, the (fixed) output of
the fuzzy extractor must be randomized, for instance by using a common reference
string. Unfortunately, this falls outside the scope of fuzzy extractor, even though it is



recognized as an important and sensitive issue [2]. Secondly, fuzzy extractor only ac-
cepts discrete sources as input. Existing performance measures for secure sketches,
such as entropy loss or min-entropy, lose their relevance when applied to continuous
sources [12]. This limitation can be overcome by quantizingthe continuous input. Li,et
al. [12] propose to define relevant performance measures for secure sketch with respect
to the chosen quantization method.

CONTRIBUTIONS.Our contribution is threefold. Firstly, we propose a new primitive
fuzzy embedderwhich can be regarded as a practical replacement for fuzzy extractor.
Fuzzy embedder can embed a uniformly distributed key while taking continuous noisy
data as input. Its performance directly links to the property of the input data. Fuzzy
embedder formalizes the concept of “key binding” in biometric template protection
schemes surveyed by Uludag,et al. [20]. In fact, fuzzy embedder can also be regarded
as a natural extension of fuzzy extractor, since it can embeda fixed string (for instance
one obtained by applying a strong extractor to the input source) into a discrete source
and thus achieve the same functionality, namely a randomized cryptographic key. How-
ever, a fuzzy embedder scheme can be directly used with any type of input to achieve
the same goal as a fuzzy extractor scheme without the need to address those concerns
mentioned previously.

Secondly, we propose a general construction for fuzzy embedder based on the tech-
nique of Quantization Index Modulation (QIM) and derive the performance result in
relation to that of the underlyingQIM. In the context of watermarking, usingQIM can
achieve efficient trade-offs between the information embedding rate, the reliability and
the distortion [5]. The trade-offs of the underlyingQIM give rise to similar trade-offs
in fuzzy embedder performance measures. Note that shielding functions [13] can be re-
garded as a particular construction of a fuzzy embedder, as they focus on one particular
type of quantizer. However, they only consider one-dimensional inputs.

Thirdly, we investigate different quantization strategies for high dimensional data
and show that quantization in two dimensions gives an optimal length of the embedded
uniform string. Finally, we propose a concrete construction of fuzzy embedder in 2-
dimensional space and compare its performance with that obtained by the 4-square
tiling method of Linnartz,et al. [13].

RELATED WORK.Dodis,et al.[8] consider discrete distributed noise and propose fuzzy
extractors and secure sketches for different error models.These models are not directly
applicable to continuously distributed sources. Linnartz, et al. [13] construct shielding
functions for continuously distributed data and propose a practical construction which
can be considered a 1-dimensionalQIM. The same approach is taken by Li,et al. [12]
who propose quantization functions for extending the scopeof secure sketches to con-
tinuously distributed data. Buhan,et al.[3] analyze the achievable performance of such
constructions given the quality of the source in terms of thefalse acceptance rate and
false rejection rate of a biometric system.

The process of transforming a continuous distribution to a discrete distribution in-
fluences the performances of secure sketches and fuzzy extractors. Quantization is the
process of replacing analogue samples with approximate values taken from a finite set
of allowed values. The basic theory of one-dimensional quantization is reviewed by



Gersho [9]. The same author investigates the influence of high dimensional quantiza-
tion on the performance of digital coding for analogue sources [10].QIM constructions
are used by Chen and Wornell [5] in the context of watermarking. The same authors
introduce dithered quantizers [6]. Moulin and Koetter [16]give an excellent overview
of QIM in the general context of data hiding. Barron,et al. [1] develop a geometric
interpretation of conflicting requirements between information embedding and source
coding with side information.

Fuzzy embedder is somehow related to the concept of information theoretic key
agreement [14,15]. However, the settings of the problem aredifferent. In secure mes-
sage transmission based on correlated randomness the attacker and the legitimate partic-
ipants have a noisy share of the same source data, while, in the fuzzy embedder setting,
the attacker does not have access to the data source.

ROADMAP. The rest of the paper is organized as follows. InSection2 we describe our
notation and provide some background knowledge. InSection3 we present the defini-
tion of fuzzy embedder and highlight the differences with fuzzy extractor. InSection4
we propose a general construction of a fuzzy embedder from any QIM and express the
performance in terms of the geometric properties of the underlying quantizers. InSec-
tion 5 we present a concrete construction for fuzzy embedder in 2-dimensional space
and compare its performance with that obtained by the 4-square tiling method of Lin-
nartz,et al.. In the last section we conclude this paper.

2 Preliminaries

LetM be ann-dimensional discrete, finite set, which together with a distance function
dM : M ×M → R

+ forms a metric space. Similarly, letU be ann-dimensional
continuous domain, which together with the distancedU : U ×U → R

+ forms a metric
space. For the purpose of this work, we used for both dM and dU . Capital letters
are used to denote random variables while small letters are used to denote realizations
of random variables. Continuous random variables are defined over the metric space
U while discrete random variables are defined over the metric spaceM. A random
variableA is endowed with a probability density functionfA(a). We use the random
variableP when referring to public sketch data andR for random binary strings in the
descriptions of fuzzy extractor and fuzzy embedder.

MUTUAL INFORMATION. By I(A; B) we note the Shannon mutual information be-
tween the two random variablesA andB, which measures the amount of uncertainty
left aboutA whenB is made public. We haveI(A; B) = 0 if and only if A andB
are independent random variables. Formal definitions of entropy, min-entropy, average
min-entropy, and statistical distanceSD can be found in [8].

FUZZY EXTRACTOR.According to the definition by Dodis,et al. [8], a fuzzy extractor
extracts a uniformly random stringr from a valuex of random variableX in a noise-
tolerant way with the help of some public sketchp (see,Figure1). For a discrete metric
spaceMwith a distance measured, fuzzy extractor [2,8] is formally defined as follows.

Definition 1 (Fuzzy Extractor). An(M, m, l, t, ε) fuzzy extractor is a pair of random-
ized procedures〈Generate, Reproduce〉 with the following properties:
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Fig. 1.A fuzzy extractor is a pair of two procedures〈Generate, Reproduce〉. TheGenerate func-
tion takes noisy datax as input and returns a random stringr and a public sketchp. The
Reproduce function takes noisy datax′ and the public sketchp as input, and outputsr if x
andx′ are close.

1. The generation procedure on input ofx ∈ M outputs an extracted stringr ∈ R =
{0, 1}l and a public helper stringp ∈ P = {0, 1}∗.

2. The reproduction procedure takes an elementx′ ∈ M and the public stringp ∈
{0, 1}∗ as input. Thereliability property of the fuzzy extractor guarantees that if
d(x, x′) ≤ t andr, p were generated by(r, p)← Generate(x), thenReproduce(x′, p) =
r. If d(x, x′) > t, then no guarantee is provided about the output of the reproduc-
tion procedure.

3. Thesecurityproperty guarantees that for any random variableX with distribution
fX(x) of min-entropym, the stringr is nearly uniform even for those who observe
p: if (r, p) ← Generate(X), thenSD((R, P ), (N, P )) ≤ ε where N is a random
variable with uniform probability.

In other words, a fuzzy extractor allows to generate the random stringr from a
valuex. The reproduction procedure which uses the public stringp produced by the
generation procedure will output the stringr as long as the measurementx′ is close
enough. This is thereliability property of the fuzzy extractor. Thesecurityproperty
guarantees thatr looks uniformly random to an attacker and her chance to guessits
value from the first trial is approximately2−m. Security encompasses bothmin-entropy
and uniformity of the random stringr whenp are known to an attacker.

We have two observations on the shortcomings of fuzzy extractor. One is that, the
public string is from the discrete setP = {0, 1}∗. However, there are biometric template
protection schemes that fit the model of the fuzzy extractorsfor whichP is drawn from
R [13] or Z [18]. The other is that, defining min-entropy forX makes sense only if
X has a discrete probability density function otherwise its min-entropy depends on the
quantization of the variable [12].

QUANTIZATION. A continuous random variableA can be transformed into a discrete
random variable by means of quantization, which we write asQ(A). Formally, a quan-
tizer is a functionQ : U →M that mapsa ∈ U into the closestreconstruction pointin
the setM = {c1, c2, · · · } by

Q(a) = argminci∈Md(a, ci)

whered is the distance measure defined onU . TheVoronoi regionor thedecision re-
gion of a reconstruction pointci is the subset of all points inU , which are closer to
that particular reconstruction point than to any other reconstruction point. We denote
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Fig. 2. By quantization,fA(a) (continuous line)
is transformed intofQ(A)(a) (dotted line).
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Fig. 3. Quantization ofX with two scalar quan-
tizersQ0 andQ1 both with step size q.

with Vci
the Voronoi region of reconstruction pointci. WhenA is 1-dimensional,Q is

called ascalar quantizer. If all Voronoi regions of a quantizer are equal, the quantizer
is uniform. In the scalar case, the length of the Voronoi region is then called thestep
size.If the reconstruction points form a lattice, the Voronoi regions of all reconstruction
points are congruent. By quantization, the probability density function of the continu-
ous random variableA, fA(a) which is continuous, is transformed into the probability
density functionfQ(A)(a) which is discrete (SeeFigure2).

QUANTIZATION-BASED DATA HIDING CODES.Quantization based data hiding codes,
introduced by Chen,et al. [5] (also known asQIM), can embed secret information into
a real value. We start with the following example.

Example 1.We want to embed one bit of information, thusr ∈ {0, 1} into a real
valuex. For this purpose we use a scalar uniform quantizer with stepsizeq, given by

Q(x) = q

[
x

q

]
.

The quantizerQ is used to generate a set of two new quantizers{Q0, Q1} defined as:

v0 =
q

4
, v1 = − q

4
, Q0(x) = Q(x + v0)− v0, Q1(x) = Q(x + v1)− v1.

In Figure 3 the reconstruction points for the quantizerQ1 are shown as circles and
the reconstruction points for the quantizerQ0 are shown as crosses. The embedding is
done by mapping the pointx to the elements of these two quantizers. For example, if
r = 1, x is mapped to the closest◦ point. The result of the embedding is the distance
vector to the nearest× or ◦ as chosen byr. During reproduction procedure, whenx
is perturbed by noise, the quantizer will assign the received data to the closest× or ◦
point, and output 0 or 1 respectively.

Formally, aQuantization Index Modulationdata hiding scheme, can be seen as
QIM : U×R→M a set of individual quantizers{Q1, Q2, . . . Q2l}, wherel = |R| and



each quantizer mapsx ∈ U into a reconstruction point. The quantizer is chosen by the
input valuer ∈ R such thatQIM(x, r) = Qr(x). The set of all reconstruction points is
M =

⋃
r∈RMr whereMr ⊂ M is the set of reconstruction points of the quantizer

Qr.
We define theminimum distanceσmin of aQIM, as the minimum distance between

reconstructions points of all quantizers in theQIM:

σmin = min
r1,r2∈R

min
ci

r1
∈Mr1

,c
j
r2

∈Mr2

d(ci
r1

, cj
r2

)

whereMr1
= {c1

r1
, c2

r1
, · · · } andMr2

= {c1
r2

, c2
r2

, · · · }. Hence, balls with radiusσmin

2
and centers inM are disjoint. Letζr be the smallest radius ball such that balls centered
in the reconstruction point of quantizerQr with radiusζr cover the universeU . We
define thecovering distanceλmax as:

λmax = max
r∈R

ζr.

Any ball B(c, ζr) contains at least one ballB(cr, σmin/2) for cr ∈ Mr, ∀r ∈ R.
Hence, balls with radiusλmax and centers inMr cover the universeU .

A ditheredQIM [6] is a special type ofQIM for which all Voronoi region of all indi-
vidual quantizers are congruent polytopes (generalization of a polygon to higher dimen-
sions). Each quantizer in the ensemble{Q1, Q2, . . . Q2l} can be obtained by shifting
the reconstruction points of any other quantizer in the ensemble. The shifts correspond
to dither vectors{v1, v2, . . . v2l}. The number of dither vectors is equal to the number
of quantizers in the ensemble.

The reliability (or, the amount of tolerated noise) of aQIM is determined by the
minimum distance between two neighboring reconstruction points. The size and shape
(for high dimensional quantization) of the Voronoi region determines the tolerance for
error. The number of quantizers in theQIM set determines the amount of information
that can be embedded. By setting the number of quantizers andby choosing the shape
and size of the decision region the performance properties can be fine tuned.

3 Fuzzy Embedder

In this section, we define fuzzy embedder and show its relationship with fuzzy extractor.
It is worth stressing that the random keyr is not extracted from the randomx, but is
generated independently, as illustrated inFigure4.

Definition 2 (Fuzzy Embedder).A (U , `, ρ, ε, δ)-fuzzy embedder scheme consists of
two polynomial-time algorithms〈Embed, Reproduce〉, which are defined as follows:

– Embed: U × R → P , whereR = {0, 1}l. This algorithm takesx ∈ U andr ∈ R
as input, and returns a public sketchp ∈ P .

– Reproduce: U × P → R. This algorithm takesx′ ∈ U andp ∈ P as input, and
returns a string fromR or an error symbol⊥.

Given any random variableX over U and a random variableR, the parameter
ρ, ε, δ are defined as follows:
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Fig. 4. A fuzzy embedder is a pair of two procedures〈Embed, Reproduce〉. TheEmded function
takes noisy datax and a binary stringr as input, and outputs a public sketchp. TheReproduce

function takes noisy datax′ and the public sketchp as input, and outputsr if x andx′ are close.

– The parameterρ represents the probability that the fuzzy embedder can successfully
reproduce the embedded key, and it is defined as

ρ = min
r∈R

max
x∈U

Pr(Reproduce(x′, Embed(x, r)) = r|x′ ∈ X).

In the above definition, the maximum overx ∈ U ensures that we choose the best
possible representativex for the random variableX . In most cases, this will be the
mean ofX .

– The security parameterε is equal to the mutual information between the embedded
key and the public sketch, and it is defined asε = I(R; Embed(X, R)).

– The security parameterδ is equal to the mutual information of the noisy data and
the public sketch and is defined asδ = I(X ; Embed(X, R)).

Since the public sketchp is computed both onX andR, ε measures the amount
of information revealed aboutX andδ measures the amount of informationP reveals
about the cryptographic keyR. When evaluating security of algorithms, which derive
secret information from noisy data, entropy measures like min-entropy, average min-
entropy, and entropy loss are appealing since these measures have clear security appli-
cability. However, these measures can only be applied to discrete random variable. In
the case of continuous random variables, these measures depend on the precision used
to represent the values of a random variable, as shown in the following example.

Example.Assume that all pointsX are real numbers between[0, 1] and are uni-
formly distributed. Assume further that points inX are represented with 2-digit pre-
cision, which leads to a min-entropyH∞(X) = log2 100. If we choose to represent
points with 4-digit precision the min-entropy ofX becomesH∞(X) = log2 10000,
which is higher thenH∞(X) = log2 100 although in both casesX is uniformly dis-
tributed over the interval[0, 1].

More examples related to average min-entropy and entropy loss can be found in
the work of Li et al. [12]. We have chosen mutual information because it captures
the measure of dependence between two random variables regardless of their types of
distributions (discrete or continuous).

FUZZY EXTRACTOR AND FUZZY EMBEDDER.From Definitions1 and 2, we argue
that a fuzzy embedder may be more appealing than fuzzy extractor in practice, due to
the following reasons:

1. A fuzzy embedder scheme accepts continuous data as input and can embed differ-
ent keys. In contrast, in a practical deployment, a fuzzy extractor scheme must be
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combined with quantization and re-randomization to achieve the same goals as a
fuzzy embedder.

2. A fuzzy embedder construction leads to a fuzzy extractor construction. Given a
(U , `, ρ, ε, δ)-fuzzy embedder scheme, we can construct a fuzzy extractor scheme
〈Generate′, Reproduce′〉 as follows:

– Generate′: U → P × R. This algorithm takesx ∈ U as input, choosesr ∈ R,
and returnsp = Embed(x, r) andr.

– Reproduce′: U × P → R. This algorithm takesx′ ∈ U andp ∈ P as input,
and returns the valueReproduce(x, p).

4 A Practical Construction for Fuzzy Embedder

In this section, we present a general construction for fuzzyembedder using aQIM and
analyze the performance of this construction in terms of reliability and security. We also
investigate optimization issues whenU is n-dimensional.

QIM-FUZZY EMBEDDER.A fuzzy embedder can be constructed fromanyQIM by defin-
ing the embed procedure as:

Embed(x, r) = QIM(x, r) − x,

and the reproduction procedure as the minimum distance Euclidean decoder:

Reproduce(x′, p) = Q̃(x′ + p),

whereQ̃ : U → R is defined as

Q̃(y) = argmin
r∈R

d(y,Mr).

Intuitively, our construction is a generalization of the scheme of Linnartz,et al.[13].
Figures5 and 6 illustrateEmbed andReproduce, respectively, for aQIM ensemble of
three quantizers{Qo, Q+, Q?}. During embedding, the secretr ∈ {o, ?, +} selects a
quantizer, sayQo. The selected quantizer finds the reconstruction pointQo(x) closest
to x and the embedder returns the difference between the two asp, with p ≤ λmax.



Reproduction fromp andx′ should returno only if x′ + p is in one of the Voronoi
regions ofQo (hatched area inFigure 6). Errors occur if(x′ + p) is not in any of the
Voronoi regions ofQo, thus the size and shape (forn ≥ 2) of the Voronoi region param
eterized by the radius of the inscribed ballσmin/2 determines the probability of errors.

RELIABILITY . In the following lemma, we link the reliability of aQIM-fuzzy embedder
to the size and shape of the Voronoi regions of the employedQIM.

Lemma 1 (Reliability). Let〈Embed, Reproduce〉 be a(U , `, ρ, ε, δ) QIM-fuzzy embed-
der, and letX be a random variable overU with joint density functionfX(x). For any
r ∈ R, we define

ρ(r) =

∫

Vr

fX(y − Embed(X, r))dy,

whereVr =
⋃

c∈Mr
Vc is the union of the Voronoi regions of all reconstruction points

inMr. Then the reliability is equal to

ρ = min
r∈R

ρ(r).

Proof: Sinceρ(r) is exactly the probability that an embedded keyr will be recon-
structed correctly, the statement follows from the definition. ut

Most known noisy data, such as biometrics and PUFs, have two main properties:
larger distances betweenx and the measurementx′ are increasingly unlikely, and the
noise is not directional. Thus the primary consideration for reliability is the size of the
inscribed ball of the Voronoi regions, which has radiusσmin/2.

Corrolary 1 (Bounding ρ) In the settings of Lemma 1, the reliability parameterρ can
be bounded by

min
r∈R

∑

c∈Mr

∫

B(c,
σmin

2
)

fX(y)dy ≤ ρ

whereB(c, r) is the ball centered inc with radiusr.

Proof.The above relation follows from the definition of reliability, sinceS(c, σ
2 ) ⊂ Vc

andx + Embed(X, r) is always a reconstruction point. ut
Corollary 1 shows that reliability is at least the sum of all balls of radiusσmin

2 in-
scribed in the Voronoi regions. Thus the size of the inscribed ball is an important pa-
rameter, which determines the reliability to noise.

SECURITY.In our construction, if an attacker learns the valuex she can reproduce the
valuer fromp. However, if it learns the secret keyr, she could cannot exactly reproduce
x, which is further illustrated in the following example

Example.In the fuzzy embedder example given inFigure6, the attacker can choose
between three different key values{◦, +, ?}. Assume she learns the correct key, in our
example◦. To find the correct value forx she still has to decide which of the recon-
struction points of the quantizerQ◦ is closest tox. Without any other information this
is an impossible task since the quantizerQ◦ has an infinite number of reconstruction
points.



Since the full disclosure of the stringr is not enough to recoverx, we can conclude
that ε ≤ δ. We now consider how largeδ, the leakage on the key depending onP ,
which is a continuous variable in our construction. We know that anyp ∈ P has the
property thatp ≤ λmax. A technical difficulty in characterizing the size ofP arises as
P is not necessarily discrete. Tuyls,et al. [19] show the following result, establishing a
link between the continuous and the quantized version ofP denoted here withPd.

Lemma 2 (Tuyls et al. [19]). For continuous random variablesX , Y and ξ > 0,
there exists a sequence of discretized random variablesXd, Yd that converge pointwise
to X , Y (whend → ∞) such that for sufficiently larged, I(X ; Y ) ≥ I(Xd; Yd) ≥
I(X ; Y )− ξ.

SinceI(R; Pd) ≤ H(Pd) ≤ |Pd|, where|Pd| is the size of the sketch. Thus it is
best to have|Pd| as small as possible. In our construction, we have|Pd| ≤ λmax. Thus
by bounding the size ofp we bound the value ofδ.

OPTIMIZATION. In this paragraph, we analyze the key length allowed by the restrictions
placed by our performance criteria on the embed and reproduce procedures. Firstly,
we take a look at the reproduce procedure which ties directlywith the reliability. The
minimum size of an error to produce a wrong decoding isσmin/2. Thus, the collection
of balls centered in the reconstruction point of all quantizers with radiusσmin/2 should
be disjoint.

λmax

σmin/2

Fig. 7. Optimization of reliability versus security. Reliabilityis determined by the size of the ball
with radiusσmin/2. Each small ball has associated to its center a different keyr ∈ R. The
number of small ball inside the large ball with radiusλmax is at least2l the number of elements
in R. To have as many keys as possible we want to increase the number of small ball, thus we
want dense (sphere) packing. The size of the public sketchp ∈ P is at mostλmax. Since for
any x ∈ U we want to be withinλmax distance to a specificr ∈ R, large balls shouldcover
optimally the spaceU . When the pointx falls in a region, which does not belong to any ball the
reproduction procedure gives the closest center of a small ball, thuswe want polytopes which
tile the space.



Secondly, the embed procedure has to be able to embed any keyr ∈ R into an arbi-
trary pointx. Hence, for each keyr the collection of balls centered in the reconstruction
points ofQk and with radiusλmax should cover the entire spaceU . λmax andλmin can
be linked as follows:

Lemma 3. The covering distance of aQIM , defined in Section 2, is bounded by:

λmax ≥ n
√

N
σmin

2

wheren represents the dimension of the universeU andN is the number of different
quantizers.

Proof: As noted above, all balls with radiusσmin/2 centered in the centroids of
the whole ensemble are disjoint. Each collection of balls with radiusλmax centered in
the centroids of an individual quantizer gives a covering ofthe spaceU , seeFigure 7.
Therefore, a ball with radiusλmax, regardless of its center, contains at least the volume
of N disjoint balls of radiusσmin/2, one for each quantizer in the ensemble. Comparing
the volumes, we have

snλn
max ≥ snN(

σmin

2
)n

wheresn is a constant only depending on the dimension. ut
Consider the case when an intruder has partial knowledge about the random variable

X . For example, she could know the average distribution of all(fingerprint) biometrics,
or the average distribution of the PUFs. This average distribution is known in the litera-
ture as background distribution. While anyQIM-fuzzy embedder achieves equiprobable
keys if the background distribution onU is uniform, the equiprobability can break down
when this background distribution is non-uniform and knownto the intruder. A legiti-
mate question is:how can aQIM-fuzzy embedder achieve equiprobable keys when the
background distribution is not uniform?

In the literature [4,7,13], it is often assumed that the background distribution is a
multivariate Gaussian. We make a much weaker assumption, namely the background
distribution is not uniform but spherically symmetrical and decreasing. In other words,
we assume that measurement errors of the noisy data only depend on the distance, and
not on the direction, and that larger errors are less likely.

Thus, to achieve equiprobable keys given this background distribution, the recon-
struction points must be equidistant as for example the construction in Figure 8 (a).
Note that putting more small balls inside the large ball is not possible since they are not
equiprobable. The problem with the construction inFigure8 (a) is the size of the sketch
which becomes large.

The natural question, which arise is:what is the minimum sketch size attainable such
that all keys are equiprobable for a given desired reliability? This question naturally
leads us to consider the kissing numberτ(n), which is defined to be the maximum
number of whiten-dimensional spheres touching a black sphere of equal radius, see
Figure8 (b). The radius of the small balls determines reliability and the minimumλmax,
such that aQIM-fuzzy embedder can be built is equal to the radius of the circumscribed
ball of as shown inFigure8 (b).
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Fig. 8. (a) Construction which yields equiprobable keys in case thebackground distribution is
spherical symmetrical in the two dimensional space. (b) Optimal construction which results in
minimal public sketch size and has equiprobable keys in the two dimensional space.

The next question we ask is:for a minimum sketch size and a given reliability, are
there dimensions which are better then others?For example why not pack spheres in
the three dimensional space where the kissing number is 12. For the same reliability it is
possible to obtain more keys? For most dimensions, only bounds on the kissing number
are known [11,21]. Assuming a spherically symmetrical and decreasing background
distribution, we have the following bound on equiprobable keys.

Theorem 1 (Optimal high dimensional packing.).Assume the background distribu-
tion to be spherically symmetrical and decreasing. For a(U , `, ρ, ε, δ) QIM-fuzzy em-
bedder withdim(U) = n with equiprobable keys and minimal sketch size, we have that
` ≤ τ(n).

Proof sketch: The target reliabilityρ0 will translate to a certain radiusσ0. In other
words, we need to stack balls of radiusσ0 optimally. To achieve the maximum number
of equiprobable keys without the sketch size getting too big, the best construction is to
center the background distribution in one such ball, and to assign a different key to each
touching ball. Thus the amount of possible equiprobable keys is upper bounded by the
kissing numberτ(n). ut

From the known bounds on the kissing number [11,21], we have the following
somewhat surprising conclusion:

Corrolary 2 Assuming a spherically symmetrical and decreasing background distri-
bution onU and equiprobable keys, for a(U , `, ρ, ε, δ) QIM-fuzzy embedder the most
equiprobable keys are attained by quantizing two dimensions at a time, leading toN(n)
different keys, where

N(n) = 6b
n
2
c2(n−2bn

2
c).

Proof: Known upper bounds [11] on the kissing number inn dimensions state that
τ(n) ≤ 20.401n(1+o(1)). This means thatN(n) ≥ τ(n) in all dimensions, sinceN(n) ≈
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21.3n and small dimensions can easily be verified by hand. Also notethat N(n1 +
n2) ≤ N(n1)N(n2). Thus quantizing dimensions pairwise gives the largest number of
equiprobable keys for any spherically symmetric distribution. ut

5 QIM-fuzzy embedder from 2-dimensional quantization

In this section we present our main construction, referred to as 6-hexagonal tiling, of
QIM-fuzzy embedder by quantizing 2-dimensional subspaces of continuous and noisy
data. We compare the performance with the 4-square tiling method introduced by Lin-
nartz,et al. [13].

Preliminary conceptLet the continuous and noisy data be represented with an-dimensional
variableX = (X1, X2, · · ·Xn). We assume thatn is even; otherwise one of the vec-
tor elements can be quantized with a 1-dimensionalQIM as the one in our example in
Section2. Thus,X can be partitioned inton2 2-dimensional subspaces and each one
can be considered separately. We take the subspace(X1, X2) as an example in the rest
of this section. On thex-axis inFigure 9 we have the values forX1 and on they-axis
we have the values ofX2. Along thez-axis (not shown in the figure) we have the joint
probability densityfX1X2

(x).
Naturally, we want to choose the densest circle packing for the 2-dimensional space,

where all circles have equal radius and the center of the circle is the reconstruction point
which is associated with a key value. However, the circles donot tile the space so that,
whenx (the realization ofX) falls into the non-covered region it cannot be associated
with any reconstruction point. Therefore, we need to approximate the circle with some



polygons that can tile the space. In 2-dimensional space, there are only three types of
polygons: triangle, square, and hexagon. Since we assume a spherical symmetrical dis-
tribution forfX1X2

, hexagon is the best approximation to the circle from the reliability
point of view.

5.1 Description of 6-hexagonal tiling

First attempt. In our construction, the reconstruction points of all quantizers are shifted
versions of some base quantizerQ0. A dither vector−→vr is defined for each possible
r ∈ R. We define thetiling polygon as the repeated structure in the space that is
obtained by decoding to the closest reconstruction point. It follows from this defini-
tion that thetiling polygoncontains exactly one Voronoi region for each quantizer in
the ensemble. InFigures9 the tiling polygonsare delimited by the dotted line. More
specifically, we define a ditheredQIM using an ensemble of 7 quantizers. The recon-
struction points of the base quantizerQ0 are defined by the lattice spanned by the vec-
tors
−→
B1 = (5,

√
3)q,
−→
B2 = (4,−2

√
3)q, whereq is the scaling factor of the lattice.

In Figure 9 these points are labeledr0. The other reconstruction points of quantiz-
ersQi (1 ≤ i ≤ 6) are obtained by shifting the base quantizer by the dither vectors
{−→v1 , · · · ,−→v6} such thatQi(x) = Q0(

−→x +−→vi ). The values for these dither vectors are:
−→v1 = (2, 0), −→v2 = (−3,

√
3), −→v3 = (−1,−

√
3), −→v4 = (−2, 0), −→v5 = (3,−

√
3), and

−→v6 = (1,
√

3). The embed and reproduce procedures are defined inSection4.
This construction (referred to as 7-hexagonal tiling) can embedn× log

2
7

2 bits, where
n is the dimensionality of random variableX . It is optimal from the reliability point of
view. However, assume that the background distribution is aspherical symmetrical dis-
tribution with mean centered in the origin of the coordinates. In the construction above
the hexagon centered in the origin will typically have a higher associated probability
than the off-center hexagons. This effect grows as we increase the scaling factorq of
the lattice. Therefore, keys might be not equiprobable whenthe background distribution
is not flat enough.

Improved construction.In the improved construction, namely 6-hexagonal tiling, we
eliminate the middle hexagon to make all keys equiprobable (seeFigure 10). Conse-
quently, the tiling polygon is formed by 6 decision regions and thus there are only 6
dither vectors. As a result, the dither vectors,{−→v1, · · · ,−→v6} are used to construct the
quantizers, but the basic quantizerQ0 itself is not used. The embed and reproduce pro-
cedures remain the same.

Our main construction can embedn × log
2
6

2 bits, wheren is the dimensionality
of random variableX . Compare with the first attempt, this construction is not opti-
mal from the key length point of view. However, keys are equiprobable regardless of
the background distribution, which we regard to be more favorable in cryptographic
applications.

5.2 Comparison with 4-square tiling

We compare the performance between 6-hexagonal tiling and 4-square tiling in terms of
reliability, the key length, and mutual information. Here we consider identically and in-
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dependently distributed (i.i.d) Gaussian sources. We assume that the background distri-
bution has mean(0, 0) and standard deviationσX1X2

2. We also assume that for any ran-
dom(X1, X2) ∈ U2, the probability distribution offX1X2

(x) has meanµ = (µ1, µ2)
and standard deviationσ2

x. Note that these assumptions are abstracted from the area of
biometrics (as an example of continuous and noisy data).

To evaluate the reliability relative to the quality of the source data (i.e., the amount
of noise measured in the terms of standard deviation from mean), we compute probabil-
ities associated with equal area decision regions, and the reconstruction point centered
in the meanµ of the distributionfX(x). The curves in Figure 11 were obtained by pro-
gressively increasing the area of the Voronoi regions. The size of Voronoi region is con-
trolled by the scaling factor of the lattice, namelyq. From the figure, our 6-hexagonal
tiling construction has a slightly better performance thanthe 4-square tiling method.
This is because the regular hexagon best approximates a circle, the optimal geometrical
form for a spherical symmetrical distribution. The key-length comparison is shown in
Figure 12. Clearly, our 6-hexagonal tiling construction has a significantly better per-
formance than the 4-square tiling method. Note that maximizing the key length means
minimizing the probability for an attacker to guess the key correctly on her first try. The
comparison of mutual information for the key when publishing the sketch is shown in
Figure 13. Note that the values are scaled to the number of bits lost from each bit that is
made public. From the figure, our 6-hexagonal tiling construction has a slightly better
performance than the 4-square tiling method.

6 Conclusion

We have proposed a new primitivefuzzy embedderas a practical replacement for fuzzy
extractor. Fuzzy embedder has solved two practical problems encountered when a fuzzy
extractor scheme is used in practice: (1) fuzzy embedder naturally supports renewabil-
ity, and (2) it supports direct analysis of quantization effects. We have also proposed a
general construction of fuzzy embedder using aQIM. TheQIM performance measures
(in the context of watermarking) can be directly translatedinto the reliability and se-
curity properties of the constructed fuzzy embedder. When considering equiprobable
keys, we have shown that quantizing dimensions pairwise gives the largest key length.
We have proposed a concrete construction, namely 6-hexagonal tiling, and shown that
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it has a better performance than the 4-square tiling method introduced by Linnartz,et
al. [13].
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