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Abstract 

 
The Fuzzy Embedder is a theoretical tool for embedding cryptographic keys into noisy sources of 

data. This extends work of the Fuzzy Extractor by adding renewability and support for 

continuous data input by use of Quantization Index Modulation (QIM). This method has been 

adopted for use with fingerprint biometrics as a template protection scheme to securely store 

and match samples under the encrypted domain.  

To create a workable environment to test the implementation a number of components were 

required. The segmentation, enhancement and alignment algorithms were sourced and 

consolidation and QIM were constructed by the author. This includes the construction of the 

honeycomb lattice, indexing scheme and modified embed and reproduce functions. Fingerprint 

samples used were extracted by the author due to the purposely difficult competition 

fingerprints databases (FVC). This is not a result of QIM itself, but a trickle effect of errors 

through all components of the system. 

The Fuzzy Embedder has been modified to accept ISO-compliant minutiae templates for 

interoperability. A limitation of the Fuzzy Embedder is it only supports fixed-length, ordered 

data sets. The solution has been considered to create an indexing scheme that is both reliable 

and secure. Results over 80-fingerprint samples have shown preliminary results of QIM to be 

satisfying, however requires more work for practical consideration.  

All images in this document belong to the author. 
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1. Introduction 
 

Biometrics refers to the automated measurement of individual’s behavioural or physiological 

traits for identification. Voice, signature, face, iris, fingerprint and recently palm-vein are the 

commonly used and researched traits. Each carries strengths and weaknesses based on their: 

uniqueness, permanence, collectability, performance, acceptability and circumvention [1]. The 

selection for a biometric system is highly dependent on the application requirements. An 

identification system, comparison of one-to-many, requires highly distinctive traits. They must 

differ substantially between each user to reduce error. Performance of such a system may also 

require low resource costs and robustness due to environmental factors.  

Interest in biometrics is due to the high level of assurance provided to identify an individual. 

In contrast to traditional credential mechanisms such as passphrases and PIN numbers, 

biometrics cannot be; lost, forgotten or stolen. They are highly immutable and can guarantee a 

level of repudiation. An example of biometric password-replacement is evident in recent 

smartphone technology and is adapted to various logical, physical accesses and identification 

systems such as; door locks, bank cards, passports and national voting systems.  

Fingerprint biometrics is the focus of study due to their growing popularity, balanced 

properties and low cost. The International Biometric Group, 2009 report projects market 

growth in biometrics of $3.42 billion to $9.37 billion in 2014, driven by government identity 

management and border protection programs. Fingerprint biometrics comprising of 45.9% of 

market share, followed by facial (18.5%) and iris (8.3%) [2]. Universally, each person has at 

most ten different fingerprints that are highly distinctive to each individual. Fingerprint sensors 

are inexpensive, unobtrusive and well accepted by users.  

Unlike a passphrase, biometric traits cannot be revoked or renewed. A compromised 

biometric sample results in its permanent loss and can have severe repercussions of identity 

theft and cross-organisational matching. A stolen fingerprint could be used in any application it 

is enrolled or registered for new ones. This is common over all biometric systems such as 

forgery of signatures or stolen photo identification cards. Passphrases, however, can be changed 

per application. A user can choose the password “1234” for one application and “5678” for 

another. Biometrics is the equivalent of always choosing the same password but of much higher 

difficulty. The fast adaptation of biometric technologies compounds the risk of exploitation due 

to the infancy of the technology.  

This research focuses on the protection of fingerprint templates for both matching and 

cryptographic applications. The aim of the project is to investigate the theoretical application of 

the Fuzzy Embedder proposed by Buhan et al using a practical implementation. The Fuzzy 

Embedder is a generalised scheme that can be applied to a number of biometric traits and/or 

representations. This implementation will focus on standard ISO fingerprint minutiae templates 

and will be compared to similar template protection schemes. The goals of the project are to 

assess its security, performance and identify its capability, limitations and future direction for 

research. 
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2. Biometric Concepts and Challenges 
 

A typical system involves two steps; enrolment and identification/verification. Enrolment 

requires the capture of the biometric trait and extraction of features - stored as a template. 

Verification involves the same process and a comparison to the enrolled template. In a 

fingerprint system, the most common feature extraction technique is based on minutiae. 

Fingerprints are made up of unique patterns of ridges and valleys. The minutiae points are the 

ridge discontinuation are called: endings and bifurcations. This method, reviewed in detail by 

Bansal et al. [24] and practically implemented by Jain et al. [27], is the supported method of 

feature extraction by the International Organisation for Standardisation (ISO) for their common 

interchange format 19794-2:2005 [3]. It was assumed the templates did not contain enough 

information to reconstruct fingerprint images, Cappelli et al. proved this incorrect with an 

average successful attack on nine different systems to be 81% [4]. This, coupled the possibility 

to create gelatine fingerprints [5] creates serious consequences if biometric templates can 

compromised. Templates therefore need to be stored in encrypted format. However, it’s 

impossible to compare them within a standard encrypted domain.  

Modern cryptosystems (AES or RSA) require bit-precision. A change in a single-bit results in 

drastically changed output [9]. The problem results from biometrics being naturally unreliable. 

It is extremely rare to produce two samples of the same fingerprint precisely. Uludag et al. 

explain this to be caused by the; acquisition method, environment and users interaction with 

the device. They explain the finger is not a rigid surface and therefore cannot be precisely 

controlled [8]. Thus, encrypting and matching biometric queries will yield wildly different 

results on each presentation. Templates can be encrypted and decrypted prior to matching. 

However, this adds a layer of complexity and inconvenience to store and retrieve the encryption 

key. 

Passphrases are the traditional mechanism to unlock encryption keys. Such a system would 

inherit their weaknesses. Studies show users constantly use simplistic, easily predictable 

practices when constructing passwords [7]. It is difficult for users to retain high strength 

passwords and thereby increasing administrative costs to change them. Securing a biometric 

template using a key and passphrase should be avoided as template will become exposed when 

decrypted for verification or identification. If the passphrase is compromised, so is the template. 

This violates the goal of biometrics for non-repudiation as anyone can input the password and 

use the fingerprint template; even if it’s not their own. In comparison, a biometric cannot is very 

difficult to fraud if the template can be stored and verified securely. The solution in literature is 

the design of template protection schemes. 
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3. Template Protection Schemes 

 
A template protection scheme is a mechanism to secure a template and posses the following 

four properties [6]. 

 Diversity: the secure template must not allow cross-matching across databases, thereby 

ensuring user privacy. 

 Revocability: it should be straightforward to revoke a compromised template and 

reissue a new one based on the same biometric data. 

 Security: it must be computationally hard to obtain the original biometric template from 

the secure template. This property prevents an adversary from creating a physical spoof 

of the biometric trait from a stolen template. 

 Performance: the biometric template protection scheme should not degrade the 

recognition performance (FAR and FRR) of the biometric system. 

 

3.1 Cancellable Biometrics 
 

In literature, the schemes fall under the categories; cancellable biometrics and biometric 

cryptosystems. Cancellable biometrics is the intentional, repeatable distortion of a biometric 

signal based on a chosen transform [11]. They are a one-way function, similar to a 

cryptographic hash. Biometric inputs are transformed and compared with a template using the 

same transformation. During enrolment, the transformation parameters are chosen. These must 

be stored securely and are required for each verification. These non-invertible transforms are 

shown for fingerprints by Ratha et al. [12] by conducting Cartesian, polar and surface folding 

transformations of the minutiae positions with good performance. Similar results can be seen 

for iris [13][14]. Biometric Salting is a similar technique; however the transform is based on a 

user-specified password. The password helps reduce false acceptance rates by increasing the 

entropy of the template shown in PalmHash [18]. It also allows for revocability. However, if the 

password is compromised, the template is vulnerable. 

 

3.2 Biometric Cryptosystems 
 

Biometric cryptosystems secure cryptographic keys using biometrics. Biometric variance does 

not make it feasible to extract keys directly. The techniques rely on the storage of public 

information known as helper data [6]. This data does not (should not) reveal enough 

information to reconstruct the biometric template or cryptographic key. It should be 

computationally infeasible to decode the key or template without the correct biometric input. 

The system provides matching indirectly by validating the extracted key. This is a form of 

template security as matching is conducted within the encrypted domain. 

Two types of biometric cryptosystems exist in literature; key binding and key generation. In a 

key binding system, the biometric template is combined with a key. Helper data is the result of 

this embedding process. This is typically the association of an error correcting code, selected 
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using the key, and biometric template. If a biometric query differs within a specified threshold, 

the associated codeword with similar error can be recovered. This is decoded to obtain the 

exact codeword to produce the key [6]. The use of error correction schemes is common and 

allows tolerance of biometric variance. Generally, the biometric cryptosystems do not provide 

revocability. Password hardening technique [19] is a measure to alleviate this. However, is more 

inconvenient. The two most popular primitives are Juels & Wattenberg’s Fuzzy Commitment 

Scheme [16] and Fuzzy Vault by Juels & Sudan [17].  

 

3.4 Key Binding Schemes 
 

A commitment scheme is both concealing and binding. That is, once a value is committed by 

the committee it is computationally infeasible to view or change. The committed value can only 

be unlocked using a witness value (biometric). For instance, playing ‘rock, paper, scissors’ over 

email. Alice chooses ‘rock’ and sends her choice locked in the commitment scheme. Bob receives 

the choice but cannot view it. He replies with ‘scissors’. Alice sends a witness value to Bob for 

him to unlock her choice. Without the scheme, one could simply change their result based on the 

first reply and win the game. If Alice sent ‘rock’, knowing that information, Bob can reply ‘paper’. 

The Fuzzy Commitment Scheme is motivated by Davida et al’s problem of secure storage of 

biometric data [20] and error correcting codes. It’s termed “fuzzy” as the witness value to 

unlock the committed value needs only be similar to that which locked it. This is to account for 

variations in biometric input and is treated as a corrupted codeword. The robustness depends 

on a distance vector (Hamming distance) between codewords and is provided by public helper 

data. A cryptographic hash is used to validate successful decoding (or decommitment). In this 

system, a user can commit a secret key with a fingerprint witness used to unlock it. Several 

methods of the commitment scheme have been implemented for; iris [21], signature [22] and 

face [23]. However, the commitment scheme requires ordered datasets. This is inappropriate 

for fingerprints as it’s difficult to introduce order of minutiae measurements due to capture 

difficulties. 

The Fuzzy Vault is the by Juels & Sudan [17] improves upon this by being order invariant and 

improves security over non-uniform distributions. This scheme can be thought of as an error-

tolerant encryption operation where keys consist of sets, opposed to sequences. The vault locks 

a key under a set A. A polynomial encodes the key by embedding it as its coefficients. Security 

rests on the polynomial reconstruction problem, based on Shamir’s secret sharing [24] and 

similar to Monrose et al’s hardening of passwords using keystroke dynamics [25]. The elements 

of A are projected as points of the polynomial. Random ‘chaff points’ are created that do not lie 

on p. The entire collection of points is R. By selecting the correct points concealed in R by chaff 

points will reveal the polynomial and thus, the key. The approach does not outline the affects of 

fingerprint alignment. A fingerprint minutiae based fuzzy vault by Nandakumar et al. [26] use 

high curvature points derived from orientation fields as helper data to assist alignment. Nagar 

et al. improved upon this work to include a hybrid scheme by using minutiae descriptors by 

Feng [29]. This information includes orientation and ridge frequency information in a minutia’s 

neighbourhood to secure the polynomial evaluation using the commitment scheme increasing 

security and performance. The fuzzy vault has drawbacks in its construction. If the same 
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biometric data is used with different polynomial and chaff points, the genuine points can be 

easily identified by correlating the values [32]. The non-uniformity of biometric features makes 

it possible to identify the genuine set from the chaff point set using statistical analysis [33].   

 

3.5 Key Generation Schemes 
 

An alternate method to key binding is to generate a key directly from biometrics. The method 

was first introduced by Bodo [30] however, unreliability of biometrics at the time hindered this. 

As discussed by Janbandhu and Siyal [31] a generation scheme would not require storage of 

either key or biometric as they are generated at the time of presentation. This can have 

applications in PKI environment such as authentication or digital signatures using only a 

biometric. Generating keys requires biometrics to be accurately repeatable. This is not the case. 

Research into the use of error-correcting codes has significantly improved reliability. The Fuzzy 

Extractor by Dodis et al. [15] is a scheme that can reliably extract nearly uniform randomness 

from a non-uniform source in an error-tolerant way. This has application to biometrics and 

functions similar to a cryptographic one-way hash. These functions take high-entropy non-

uniform sources and yield smaller uniform output based on concepts of min-entropy and 

statistical distance. With a zero level of tolerance, a fuzzy extractor can be viewed as a one-way 

hash function. To achieve this with noisy input, public helper data is generated to aid 

reconstruction of the repeatable string R. This string can be used for symmetric encryption, 

generating a public-secret key pair or other applications that use uniformly random secrets. A 

second primitive derived from their work is the secure sketch. Given a biometric sample, a 

sketch is made. This sketch does not reveal any information about the original sample (entropy 

loss). Given the same input with noise and the sketch, the original can be reproduced exactly. 

This concept is based on previous “fuzzy” commitment (Hamming Distance) and vault (Set 

Difference) that are seen also as sketches. Those schemes fuse information about the biometric 

and key together. This scheme ‘extracts’ a key from a biometric at presentation given a sketch 

that contains only metric distances. The more entropy available the larger key extracted. 

However, given the same biometric, the same string will be extracted. Although this provides no 

information about the biometric sample, it defies the requirement of reusability. Boyen [34] 

address the case of fuzzy secret reuse and suggests attacks known as adaptive chosen secret. If 

this string is ever compromised it cannot be revoked.  

Sources of biometric data can be either discrete or continuous. Fuzzy Vault, Commitment and 

Extractors are discrete. Linnartz and Tuyls’s Shielding Function [35], Tuyls et al’s Reliable 

Component Scheme [36] and Chang et al’s multi-bit scheme are examples of the latter. The 

previous framework of Fuzzy Extactors is based on discrete data input. Buhan et al. [37] extend 

this work to unify these two models called the CS-Fuzzy Extractor. However, many of the 

definitions of fuzzy extractors (statistical distance, min-entropy) are assumed for discrete data. 

These no longer apply in a continuous domain and are therefore modified. In order to prove 

these definitions, they demonstrate the CS-Fuzzy Extractor on the three schemes mentioned 

previously. These methods are based on methods of quantization. 

Quantization is the ability to convert continuous data (real numbers such as π) and convert 

them into discrete data (integers or precision such as 3.14). Quantization is the method used to 
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convert analog-to-digital signals as described by Bennet [38] as ‘quantizing of time’. Vector 

quantization for image compression by Gray [39] is constructed by moving points to the nearest 

Voronoi region based on a distance metric. This use is seen in many compression algorithms.  

Chen and Wornell [40] extended quantization for ‘Digital Watermarking’ to embed a signal 

within another to form a composite to hide data (steganography). They propose a method of 

Quantization Index Modulation embedding and used by Linnartz et al.’s [35] shielding functions 

in one-dimension.  

Buhan et al. [41] propose to extend the CS-Fuzzy Extractor theory with a practical 

implementation using QIM later termed the Fuzzy Embedder [42]. A quantizer is a function used 

to map continuous points to a discrete reconstruction point in a set. Given a number of 

quantizers (called an ensemble), a reconstruction point is chosen and by an input value. Each 

reconstruction point has a voronoi or decision region that accounts for variations in noise. Each 

quantizer has a minimum distance between each other throughout metric space. Based on the 

Fuzzy Extractor, the input can be derived from the biometric itself or in combination with 

another independently random generator. The concept of an independent source is used to 

achieve the goal of revocability. An example of the embed procedure, the random input r selects 

one of the quantizers of an ensemble {Qo, Q+, Q*} and finds the nearest reconstruction point for 

the feature coordinate x. The embedder returns the distance between the point x and 

reconstruction point as p (sketch). For instance, if uniformly random r ϵ {1,2,3}, it will select the 

corresponding quantizer {Qo, Q+, Q*} closest to x. The distance between quantizers is λmax  and 

represents the threshold for noise in the biometric input. This distance is represented as sphere 

assuming noise is not directional. Equiprobably distance between quantizers, to create 

uniformity, causes these spheres to have undefined spaces. The solution is to ‘dither’ the space 

using a hexagon polytope lattice. 
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4. Fingerprint Based Fuzzy Embedder 
 

The Fuzzy Embedder implementation is constructed to accept standard ISO/IEC 19794-2 

templates providing interoperability between varieties of popular compliant feature extractors. 

To avoid assumptions on vendor implementation, only the required data fields should be 

considered as there is no guarantee they are supported. This is the minutia triple defined as 

fingerprint ridge-endings and bifurcations (fork). A template consists of an unordered set T 

being the template. 

   T = { m1, m2, … mn }     where,  mi = ( xi, yi, θi ) 

The unordered set creates a substantial limitation in the adaptation of the Fuzzy Embedder. 

It is not detailed how the helper data is matched to the corresponding minutiae in the reference 

sample fingerprint (section 4.4). Helper data and minutia triples require a 1:1 match and 

become difficult given the limitations on descriptor information and noise introduced in the 

system. While ordered fingerprint representations exist, such as directional fields, standard 

templates are preferred due to their high adaptation. To address the limitation of unordered 

data sets an indexing scheme is proposed in section 4.4. 

Each triplet contains: xm and ym co-ordinates representing the minutia location based on 

image size and resolution. θm is the orientation of the minutia along the x-axis counter-

clockwise beginning from the right. Triplet data is represented by two-bytes each. Data is scaled 

to fit the granularity. For instance, orientation is 1.40625 (360/256) degrees per least 

significant bit. Orientations are directed inwards for endings and outwards for bifurcations. 

Standard templates contain optional fields: minutia type and quality. The extended data 

fields; core/delta position and ridge count. Core and delta are points of high curvature and ridge 

count the number of ridges between neighbouring minutiae. Use of additional descriptors 

should also be avoided. Despite this, the best participants of the Fingerprint Verification 

Competition (FVC) are based on both global minutia positions and alternative/hybrid 

techniques using additional descriptors of: singular points, ridges counts, orientation field, local 

ridge frequency, textures and pattern geometry [43]. Until these are standardised, the use of 

additional descriptors is used sparingly.  

The Fingerprint based Fuzzy Embedder is a system consisting of a number of components 

shown in figure 4.1. Each module is independent from another and is interchangeable with 

different standards, representations, mechanisms.  Some can be skipped entirely. For instance, 

the consolidation step is not required. The Fuzzy Embedder can work directly with only a single 

reference sample and query. However, the consolidation will significantly improve results. As a 

generalisation, not only can a cryptographic key be embedded, but messages, passwords or 

binary data. This applies not only to fingerprints, but other biometrics traits or non-uniform 

sources of entropy. Each module in the Fingerprint based system is considered individually in 

the following sections.
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4.1 Alignment 
 

The Fuzzy Embedder requires that sample template minutia match pair-wise on a two-

dimensional plane. Rotation and displacement of two samples can differ greatly. Rotation being 

the direction the fingerprint is placed in relation to the sensor and displacement is the position 

it is placed in relation to the sensor. Alignment is the method of positioning two to achieve the 

most accurate overlap of reference and sample. Alignment must be the performed prior to; 

template consolidation, embedding and reproduce procedures. This is known as pre-alignment. 

A number of methods have been suggested for this purpose and can be classified as; absolute 

or relative. Absolute is more appropriate for large identification systems, in which each sample 

is considered individually. The Fuzzy Embedder is a verification system and can make use of 

relative alignment where one sample is aligned with another for greater effectiveness.  

A common method for fingerprint alignment is to determine two common reference points 

across all samples and globally align each by determining the angle difference, offset and 

transforming the reference points together. This requires an accurate method to determine two 

points common between fingerprint samples. In identification systems, fingerprints are 

classified by global features such as singularities. Common classes include; loops, whorls or 

delta and can be used as reference points. 

The detection of singularity reference points is detected using the Poincare Index approach 

by Wang et al. [51]. The method uses a smoothed to determine regions of high curvature and 

shape. To remove spurious points a combination of; smoothing, segmentation and rules are 

used for a total performance rate of 91.54%. However, missing or inaccurate reference points 

due to poor quality images and distortion will affect the accuracy of the Fuzzy Embedder. 

  

 

Figure 4.1, a high-level view of a fingerprint based biometric cryptosystem using the 

Fuzzy Embedder including consolidation step. 
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4.2 Feature Extraction 
 

Feature extraction is the combination of image processing to determine minutia points of a 

fingerprint. It’s extremely difficult to extract minutiae given noisy images. The security and 

reliability of the Fuzzy Embedder relies heavily on the ability to detect minutia points correctly 

as missing or spurious minutia are the main cause of error in the system. Prior to extraction, the 

fingerprint images are enhanced and segmented to increase accuracy.   

The enhancement algorithm used is based on Sharat et al. Short Time Fourier Transform 

(STFT). The algorithm estimates probalistic ridge orientation and frequency to recover ridge 

discontinuities. The algorithm also smooths and binarises images to remove small areas of 

noise. The enhancement method reports a 17% improvement in recognition rate over the 

FVC2002 database [48]. 

Segmentation determines the foreground and background of the image known as, region of 

interest (ROI). The ROI is any part of the image that contains easily distinguished ridges up to 

the edges of a fingerprint. Backgrounds can contain impurities, left on a scanner from previous 

samples, which can disrupt enhancement and extraction. The algorithm used is block-based 

segmentation by Peter Kovesi [49].  

   

 

 

After image alignment, enhancement and segmentation, minute features can be extracted 

with higher accuracy. This has been viewed by visual comparison of extraction between grey-

scale images and enhanced/segmented images. Impurity errors, clustering, ridge-errors are 

reduced and number of detected minutia increased. The ISO-compliant Fingerprint SDK by 

Griaule Biometrics [60] is used. Details of the feature extraction process are not provided, 

however results suggest good detection and removal of false minutia such those produced by 

false breaks or islands. These post-processing techniques on skeleton images are reviewed in 

high detail by Zhao & Tang [52]. Although the extractor falsely detects ridge-endings at the edge 

of a fingerprint, this can be avoided using correct segmentation (figure 4.2.1). The result of 

feature extraction is the compliant template.  

  

Figure 4.2.1, poor segmentation can results in 

incorrect feature extraction. 
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4.3 Template Consolidation 
 

A reference template combined with multiple registrations can significantly improve accuracy 

of the Fuzzy Embedder. This is known as consolidation and reduces the size of the reference 

template to only the most reliable points. Prior to consolidation, a number of sample images are 

aligned. The more samples selected guarantee a higher reliability. Features of each sample are 

used to distinguish overlapping data clusters using a density-based scan with noise (DBSCAN) 

[45]. The DBSCAN detects clustered points based on the number of points within its 

neighbourhood given a suitable distance metric. The scan also detects those points that do not 

belong to a cluster. This property is valuable as feature extraction can yield incorrectly 

detected/missed minutia. Figure 4.3.1 shows an incorrect minutia during feature extraction. 

This was caused by the placement of the enrolled finger (or noise) causing it to become 

segmented and removed.  

 

 

 

 

 

 

The consolidation process of six samples can be seen in figure 4.3.2. 1. All feature points from 

all sample images. 2. The result of the DBSCAN given a minimum number of points as 4 and 

distance of 10. The distance is directly relational to the step-size of the Fuzzy Embedder. Crosses 

(x) represent the core cluster points, addition (+) cluster border points, and circle (o) are noise. 

3. Removal of noise reveals only the reliable points best used for embedding. 4. Subtractive 

clustering estimates the cluster centers [47]. The subtraction of noise, determination of clusters, 

centroids and their distances can be optimised however, is not considered in this paper. 

 

 

 

 

Figure 4.3.1, a missing minutia point due from two 

samples (red). 
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Figure 4.3.2, a) consolidation of 6 templates of the same finger. b) DBSCAN, Cross 

(x) core points, Addition (+) boundary points and circle (o) noise. c) removal of 

noise points. d) result points of sub-clustering. 
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4.4 QIM Construction 
 

The practical construction of a dithered QIM defined as an ensemble of 7-quantizers suggested 

by Buhan et al. [42].  Ideally, each quantizer should be of equal distance from one another to 

provide equiprobablility. This is to provide maximum uniformity of output as required by 

cryptographic keys. The ideal shape of the regions is a circle. To fill space, the equal distance 

between them is known as the ‘kissing number’. In 2D space, one circle can at most touch 6 

others of equal shape and size without overlapping. However, this produces undefined regions. 

The dithered lattice removes this by using a tessellated hexagonal polytope lattice (or 

honeycomb).  

The construction of the lattice created by the author is shown in figure 4.5.1 and is identical 

for both embed and reproduce functions. The lattice tiles space with quantizers from the 

starting point S given a scaling factor q (step-size) and is the basis of the new QIM indexing 

scheme. 

Given starting point S in Euclidean space the lattice is created first by constructing the 

hexagonal lattice that defines its voronoi region. Shown in figure 4.5.1a, the scaling factor q is 

given as the apothem a, given a regular hexagon of 6 sides.  

r = a/(cos(π/6)) – formula for a regular hexagon 

where, r is the circumradius 

The quantizer ensemble, the group of seven quantizers, is defined by shifting the starting 

point (the ensemble centroid) by the dither vectors determined by the step-size (apothem) 

shown in figure 4.5.1b of the regular hexagon. 

⟶V0 = (0, 0)   ⟶V4 = (-2a, 0) 

⟶V1 = (2a, 0)  ⟶V5 = (-a, -(3/2)r) 

⟶V2 = (a, (3/2)r) ⟶V6 = (a, -(3/2)r) 

⟶V3 = (-a, (3/2)r) 

For a quantizer ensemble, a neighbour quantizer ensemble exists. The group of seven 

quantizer ensembles is named the centroid ensemble as their position is determined by its 

centroid. These shift vectors are similarly shown in figure 4.5.1c. 

   ⟶Vs0 = (0, 0)  ⟶Vs4 = (-a, -(9/2)r) 

   ⟶Vs1 = (5a, (3/2)r) ⟶Vs5 = (4a, -3r) 

   ⟶Vs2 = (-4a, 3r) ⟶Vs6 = (5a, (3/2)r) 

   ⟶Vs3 = (-5a, -(3/2)r) 

 

4.4.1 Indexing 
 

Each quantizer has an associated index value allocated incrementally from the starting point 

following the spiral mapping scheme in figure 4.5.1d. Altering the position of the starting point 

will shift all reconstruction points. This causes feature vectors to fall into regions of different 
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indexes. The same occurs when altering the step-size. Therefore, the starting point and step-size 

must be known for both embed and reconstruction to produce the same indexing scheme.  

The indexing scheme is required to find errors in matching feature-pairs between reference 

and query samples. Minutiae templates are sets of unordered tuples. The main limitation of the 

Fuzzy Embedder is it requires an ordered data set. The helper data, output by the embed 

procedure, has a one-to-one mapping with its input. The same mapping is required for 

reproduction. 

Prior to embedding and reproduction, each feature vector in X is mapped to the nearest 

quantizer and is assigned its index value. Each vector x is then sorted descending from highest 

to lowest index. These indexes are stored as helper data to maintain order during reproduction 

as well as distinguishing set overlap of two samples X and X’.  

 

 

4.4.2 Embedding 
 

The embed procedure takes input X and embeds it to independently random variable K. In 

this implementation using seven quantizers, K must be split into 3-bit vectors called k. This 

vector represents the index number (eg, 001 = index #1, 111 = index #7).  Thus the value k 

selects the quantizer that x (minutia triple) maps to. Defined by Buhan et al as: 

   Embed(x, k) = QIM(x, k) – x 

The embedder returns the difference between the two as p (helper data) where p ≤ λmax. λmax 

is the maximum distance between two corresponding quantizers. Where, n is the number of 

Figure 4.4.1, the construction of the hexgonal lattice. a) single tile: center, circumradius 

and apothem. b) single quantizer ensemble, center tile is the centroid. c) centroid 

ensemble (seven quantizer ensembles). d) mapping of quantizer centroid indexes from 

the starting point. e) mapping of individual quantizer indexes. 
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dimensions, N the number of quantizers, σmin the step-size as defined by Buhan et al.  

n = 2, N = 7, σmin = 4 

   λmax  = (n√N)σmin/2 
   λmax  = 10.6 

 

This is explicit as the embed procedure always selects the nearest quantizer a centroid 

ensemble (figure 4.4.1a). This is achieved by first determining the nearest centroid to point x, 

then comparatively searching the minimum distance of all quantizers of k in the neighbourhood 

ensembles. The distance and index, prior to embedding, is stored as helper data. 

 

4.4.3 Reproduce 
 

The reproduce procedure takes the helper data p and input X’ to reproduce the original 

random variable K, defined by Buhan et al as: 

Reproduce(x’, p) = Q(x’ + p) 

where,  Q(y) = minimum distance to a quantizer 

If x’ is sufficiently close to x it will return the original quantizer of the embed procedure and 

its associated value k. The reliability of this procedure is based on the step-size determining the 

bounding box that x’ must fall within to correctly reproduce k, shown in figure 4.8.1b. The larger 

the bounding box, the larger tolerance of error. However, increasing step-size reduces the 

number of possible quantizers and increases the difficulty to order data reliably. 

 

4.4.4 Pseudocode 
 

Pseudocode for Embed and reproduce functions of QIM only: 

1. Input Fuzzy Embedder Parameters (key, fingerprint) 

2. Hash key 

3. Create hexagonal lattice (starting point, step-size) 

Store index values of all quantizers given indexing scheme 

4. For each triple 

Map triple x/y to nearest quantizer 

Store index value with triple 

5. Order indexes by decending order 

6. For each triple 

 Map triple to nearest quantizer based on corresponding 3-bit key 

Store distance (helper data) with index 

Increment next 3-bit and triple 

7. Store distances, angle, index, reference point, step-size (from feature extraction step) 

and hash 
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Pseudocode for Reproduce Procedure: 

1. Input Fuzzy Embedder Parameters (helper data, query fingerprint) 

2. Create hexagonal lattice (starting point, step-size) 

a. Store index values of all quantizers given indexing scheme 

3. For each triple 

a. Map triple to nearest quantizer 

b. Store index value with triple 

4. Order indexes by descending order 

5. For each triple 

a. order by descending, if two or more matching indexes (points falling within the 

same voronoi region) 

i. for each triple (of matching index) 

1. Find minimum orientation distance of all triples given threshold 

(eg, 20 degrees) 

2. If conflict, remove conflicting triple 

6. For each triple  

a. If has matching index 

i. add distance vector 

ii. Find nearest quantizer 

iii. Store quantizer value 

b. Else  

i. Skip, but store position of error 

7. If number of errors is < 7 (or other value) 

a. For each error 

i. Increment value by one for all possible combinations 

ii. Compute and compare hash 

iii. Return result 

8. Display pass or fail. 

5. Test Results 
 

The Fuzzy Embedder has been constructed using C# and incorporates the feature extraction 

method using Griaule Biometrics fingerprint SDK 2009. Alignment, consolidation and 

enhancement algorithms have been implemented in MATLAB. Using the FVC 2006 database 1, 

only 26 fingerprints had two singular points required for alignment. Of these, only one set 

contained enough images to be considered for template consolidation. This is due to missed 

delta singularities from cut-off fingerprint samples. The set that did contain two singular points, 

minutiae did not form dense enough clusters to output a consolidated temple. This violates the 

requirement of template protection schemes to provide reliable performance. This is tied both 

to the alignment method and the Fuzzy Embedder not tolerating rotation or displacement on its 

own. The solution can be found local minutiae matching techniques that are invariant to global 

translations such as those originally proposed by Ratha et al. [54], Jaing & Yau [55]. The most 

appropriate mechanism for representation of fingerprints using this scheme is Minutia 

Cylinder-Code by Capelli et al. [55] and will be considered in section 5.1. 
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The Fuzzy Embedder requires a tight level of precision. The FVC databases is designed for 

matching, not cryptosystems. There is little constraint on the capture of samples such as quality. 

The competition databases are purposely difficult to mimic practical environment or ‘worst-

case’ scenarios.  For instance, exaggerated; distortion, rotation and displacement. Practically, 

the Fuzzy Embedder, alignment algorithm chosen cannot cope with such constraints. Thus, a 

minimum level of quality is required in the test data. This includes the ability to detect two 

singular points and similar rotation and displacement. Fingerprints will be captured using an 

optical reader with a resolution of 500dpi. 

Testing of the Fuzzy Embedder contains a set of 80 fingerprints captured using an optical 

sensor. There are 10-sets of fingerprints with 8-presentations of each with minimal rotation and 

distortion as possible. This was achieved using a reference point to visually locate fingerprint 

samples such as core/delta position. Average minutia extracted from enhanced images is 46 

with minimum values of 30 and a maximum of 64. 5 samples were used for construction of the 

reference template. The remaining samples are used for queries. DBSCAN parameters varied 

depending on the amount of noise and the accuracy of the templates. 

The DBSCAN results vary between 

accuracy of samples and their variance. 

Average reference points for a scan of 

neighbourhood clusters of 4 (out of 5) and a 

distance of 10 result in 27 points. This 

number has not been optimised and changes 

to both the DBSCAN and sub-clustering 

variables alter the dataset significantly. 

Given a range of 10 the results of the success 

and failure of the Fuzzy Embedder is shown 

in figure 5.1 to center around 13 to 17. This 

correlates with the average error between 

points of samples and is maintained through 

DBSCAN.  All queries had a success of 100% 

over varying step-sizes and small bounds DBSCAN. However, this could not be obtained if it 

were constant. For instance, a step-size of 13 resulted in 9 successes over 30 query samples - 70% 

False-Rejection. If errors can be corrected (or not) by varying the step size, this suggests an 

error in the construction of the Fuzzy Embedder as increasing the step-size should always result 

in higher reliability.  

 

5.1 Sources of Error 
 

Two presentations of the same fingerprint are rarely the same. A combination of; alignment, 

pressure, impurities, scaring or moisture causes variation in feature extraction. The alignment, 

extraction and pre-processing (enhancement and segmentation) algorithms themselves can also 

exacerbate the problem.    
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Quantization tolerates linear distortion however, cannot correct missing or spurious minutia. 

The Fuzzy Embedder relies on the intersection of the two sets X ∩ X’. The indexing scheme 

distinguishes the intersection between the two sets. All points in set X’ must have a 

corresponding matching triple in X. Given that errors can be corrected by the step-size, only 

points of x’ within a bounding box of x can be mapped 

to the correct quantizer.  

This bounding box represents the tolerance of error 

between two samples, shown in figure 5.1.1b. It creates 

an issue of defining the position of x without revealing 

too much information about it. The indexing scheme is 

a naïve approach as is assumed the reference point x 

falls at the center of a voronoi region. Practically, this is 

not the case as the bounding box can overlap at most 4-

tiles. When the value of x falls on the boundary of a 

voronoi region, it’s highly likely the corresponding 

point x’ will fall into the neighbouring region and thus, 

be allocated a different index and excluded from the set. 

An alternative approach is to quantize the original x to 

be at the center of a region. However, this would cause 

public distances P to be of equal lengths. Simple 

patterns will allow an adversary to find the value of K.  

The issue of boundary points can be corrected 

(crudely) by changing the step-size. For small step-

sizes, each feature vector is generally allocated a 

different index. However, for higher step-sizes, two or 

more points can fall within the same voronoi region. In 

this case, the smallest ∆θ of points is taken (followed 

by x then y) given a tolerance value. Ordering a large 

number of points of the same index can result in the 

incorrect matching of helper data p. 

The incorrect overlap of reference and query sets is caused by missing pair-wise matches 

where there is no value in set X’ that corresponds to a point in set X. For every miss-matched or 

missing point, the key will differ in the position that it occurred. The advantage of using the 

indexing scheme allows this position of error to be known by comparison of two resulting 

hashes. 

The hash of the output R is used to determine success or failure of match attempt of the 

reference and sample. It is possible to correct a number of points by exhaustively testing every 

combination of missing key-bits (1-7) before finding a matching hash becomes computationally 

expensive (tested on a 2.2Ghz Intel core-duo) of around 10 seconds. The missing key-bits are 

identified by unmatched indexes. Each value is incremented by 1, hash computed and compared 

and loops until either a match occurs or all combinations are exhausted. 

 

Figure 5.1.1, a) selection of the 

nearest quantizer based on k. b) 

The bounding box of error 

(shaded) 
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5.2 Key-Length Security 
 

Security of the system is primarily based on its ability to produce key-bits. The key length 

required depends on the desired level of protection for an application. The ECRYPT II annual 

report [44] suggests recommended key-sizes based on current attack models and resources on 

cryptographic algorithms.  For instance, in 2008, a 58-bit DES key would provide around 200-

days of protections against a $400 FPGA system or 3-days with a $7,500 system. The report 

suggests minimum key lengths for symmetric ciphers to be 80-bits. This protects against the 

most reasonable and threatening attacks. This length provides short term protection against 

large-agencies (high resources) and long term protection from small of less than 4-years. In 

comparison, 128-bit keys provides general long-term protection for up to 30-years – 256-bit for 

the ‘foreseeable future’ (quantum computing). 

The key-length is given by the number of feature vectors and number of quantizers. Given 

seven quantizers contains 3-bits of entropy an 80-bit key requires 27 features and equivalent 43 

for 128-bits.  This provides minimum benchmark for the number of vectors for embedding. 

Given the reproduce function can correct up to seven missing vectors, the query sample must 

overlap over 20 vectors of the reference template. The average number of features extracted 

from the DBSCAN was 27 with a minimum of 17 and maximum of 41. On average this is 

sufficient for the minimum key-size requirement, however varies highly on the fingerprint 

sample, DBSCAN result and parameters. 

 

5.3 Information Leakage 
 

The preceding table is sample data of the Fingerprint based Fuzzy Embedder. The two tables 

represent the data required for both embed and reproduce from a reference template X and 

query sample X’. The data has been reduced to show only the first seven variables. The 

embedder was set with a step-size of 5. The reference template contained 21 feature vectors 

(63-bit key) and was correctly reproduced with 7 missing points. 

Input message:  123456712345671234567 

Result:   133456616327674234567 

Post-Correction: 123456712345671234567 

Public data includes: the angle (θ), index, distance, reference points and hash result (red shade). 

Data Set X Key Index Quantizer Distance Reference 

 X: Y: Θ: Bits:    Reference 1: 
191 238 176 000 (1) 3378 (186, 234.83) (5, 3.17) (116, 153) 

162 213 76 001 (2) 2878 (161, 226.17) (1, -13.17) Reference 2: 

236 153 200 010 (3) 2821 (241, 156.88) (-5, -3.88) (201, 162) 

138 225 216 100 (4) 2412 (136, 217.51) (2, 7.49)  

162 188 72 101 (5) 2402 (156, 200.19) (6, -12.19)  

215 144 76 110 (6) 2354 (216, 148.22) (-1, -4.22)  

139 194 212 111 (7) 1977 (131, 191.53) (-6, 1.38)  

Hash: 8bb0cf6eb9b17d0f7d22b456f121257dc1254e1f01665370476383ea776df414 
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Data Set X’ Key Index Quantizer Distance Reference 

 X: Y: Θ: Bits:    Reference 1: 

191 238 172 000 (1) 3378 (186, 234.83) (5, 3.17) (116, 153) 

0 0 0 001 (2) 0 (-4, 9.66) (1, -13.17) Reference 2: 

0 0 0 010 (3) 0 (1, 1) (-5, -3.88) (201, 162) 
140 226 212 100 (4) 2412 (136, 217.51) (2, 7.49)  

160 191 68 101 (5) 2402 (156, 200.19) (6, -12.19)  

215 144 76 110 (6) 2354 (216, 148.22) (-1, -4.22)  

0 0 0 111 (7) 0 (-9, 0) (-6, 1.38)  

Hash: 8bb0cf6eb9b17d0f7d22b456f121257dc1254e1f01665370476383ea776df414 

 

The main security vulnerability exists in an adversary gaining knowledge of either X or K 

using the knowledge of helper data P. Although both values are important, K can be revoked if 

compromised. However, because X is a biometric template, should never be revealed. This is the 

main requirement and motivation of a template protection scheme. 

Given the worst case, an adversary has knowledge of; P, K, S and step-size. This insinuates the 

adversary can correctly reproduce the Fuzzy Embedder and indexing scheme. Using the public 

indexes, it is possible to find the region which potential points x can fall within. Given the true 

value of x can take any value within the voronoi region it is not feasible to find the exact value of 

x. For a step-size of 5 the number of integer values that x can take is the area of a regular 

hexagon.  

    Area = ½(apothem)(perimeter) 

    Perimeter = 6(side) 

    Side = (2a)tan(180/n)   where n = 6 

    Area = 87 

Any feature vector of X can potentially take any of the 87 values given a step-size 5. A step-

size of 1, provides 3.5 possible values. This is equivalent to a one-to-one mapping of index to 

feature and should be avoided.  

There are two solutions to prevent this. Fuzzy Embedder variables S and step-size should be 

stored securely on a token, smart-card or remote database. The public indexes can be combined 

with chaff points, such as those used in a Fuzzy Vault implementation. Chaff points would be 

significantly different from genuine points. Given an adversary has K the task is simplified by 

exhaustively checking which points map to the key by reversing the process. Split the key into 3-

bit blocks and find all the reconstruction points associated with the value. Given a step-size 5 

and templates range of 256 x 256. 

Diameter = 2a = 10 

No. of quantizers x = 260/10 = 26 

No. of quantizers y = 260/12.5 = 20 

No. of quantizers (xy) = 20 * 26 = 520 
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  520 / no. of quantizers = 74 

Therefore, there are 74 quantizers of the same type. Incrementally trying each, with the 

addition of public distance will reveal the index and thus x – ignoring chaff points. Incrementally 

working a 27-feature key, would require under 2000 cycles, easily calculated on modern 

processors.  

Given the key is never stored, finding the value of K is difficult. However, based on 

recommended key lengths in section 4.9, with enough time, the key can be revealed. Using an 

old instance of a Fuzzy Embedder (even if parameters are changed regularly) it is possible to 

compute X offline with enough time and resources.  

Without the parameters S and step-size this task is made more difficult. The step-size is 

proportional to the indexing scheme, given the same starting point. Given a step-size of 1, key 

value of 1 and starting point (1, 1), the index value of a point (0, 256) is 7453. An increased step-

size of 10, results in the index value of 502. Higher step-sizes result in lowered indexes. 

However, chaff points can be used to obscure this.  

Altering the starting point S also alters the indexing scheme. Using the previous data, where S 

= (1.1, 1.1) the index changes to 7467. Small changes have a dramatic effect on the indexes as 

well as the step-size. This ensures that no two Fuzzy Embedders are the same, somewhat like a 

password salt. 
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6. Conclusion 
 

Biometric cryptosystems aim at either binding or generating keys long enough to be applied to 

standard encryption mechanisms. To reduce the probability of being guessed in brute-force 

attacks, they must exhibit sufficient entropy and randomness (eg, 128-bit key). The main 

challenge when combining biometric cryptosystems and fingerprints is the issue of reliability. 

The Fuzzy Embedder is a generalised and simplistic scheme that has the potential to satisfy the 

goals of; diversity, revocability, security and performance with the added benefit of applying 

extractor theory to continuous data.  

The Fingerprint based Fuzzy Embedder currently does not show sufficient evidence to satisfy 

these requirements. Further analysis and testing is required to solve the main issue of the 

bounding box problem. Improvements to a number of components can also further improve its 

reliability. This includes the DBSCAN, alignment, enhancement, segmentation and feature 

extraction. The restriction of good quality fingerprint images and failure to produce results on 

FVC data sets is an example of this. Further, the security benefits need to be analysed more 

carefully to determine the exact repercussions of information leakage, starting point and step-

size. The Fingerprint based Fuzzy Embedder is likely to achieve better results using additional 

descriptor information, ‘state-of-the-art’ mechanisms such as Minutia Cylinder-Code [55] or 

other 3D data structures.  

Minutia Cylinder-Code uses local minutia structures of fixed-radius and nearest-neighbours 

originally proposed by Jiang & Yau [56] and Ratha et al. [57]. The two local structures provide a 

higher tolerance to rotation and displacement transformations using a concept of cylinders. 

Smoothing and saturation effects are implemented to limit spurious and missing minutia caused 

by feature extraction. In comparison to previous implementations and Feng [58], MCC shows 

significantly higher accuracy over benchmark fingerprint database FVC2006 [59]. The issues 

addressed by MCC are equivalent those that affect the Fuzzy Embedder. It removes the need to 

pre-align images and use orientation information in helper data. Such implementation will 

require a complete reconstruction of the Fuzzy Embedder to accept MCC input. 

An alternative construction of the Fuzzy Embedder could simply incorporate a 3rd dimension. 

Like MCC, this extra dimension would represent the minutia orientation. The same 

requirements of QIM size and shape remain, however the hexagonal lattice is no longer 

appropriate as it does not tessellate equally in 3-dimenstions. Alternative shapes would include 

platonic solids such as a cube (used in MCC) or dodecahedron. However, distances between 

adjacent cubes in an ensemble will not be of equal distance and requires careful planning to 

achieve the best equiprobability in a 3D lattice. 
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